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ABSTRACT

Improved capacity of genomics and biotechnology has greatly enhanced genetic studies in different areas.

Genomic selection exploits the genotype-to-phenotype relationship at thewhole-genome level and is being

implemented in many crops. Here we show that design-thinking and data-mining techniques can be lever-

aged to optimize genomic prediction of hybrid performance. We phenotyped a set of 276 maize hybrids

generated by crossing founder inbreds of nested association mapping populations for flowering time,

ear height, and grain yield. With 10 296 310 SNPs available from the parental inbreds, we explored the pat-

terns of genomic relationships and phenotypic variation to establish training samples based on clustering,

graphic network analysis, and genetic mating scheme. Our analysis showed that training set designs out-

performed random sampling and earlier methods that eitherminimize themean of prediction error variance

or maximize the mean of generalized coefficient of determination. Additional analyses of 2556 wheat hy-

brids froman early-stage hybrid breeding systemand 1439 rice hybrids froman established hybrid breeding

system validated the approaches. Together, we demonstrated that effective genomic prediction models

can be established with a training set 2%–13% of the size of the whole set, enabling an efficient exploration

of enormous inference space of genetic combinations.
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INTRODUCTION

The relationship of genotype to phenotype is a fundamental

concept in evolution, biology, and genetics. Among genomics-

enabled strategies (Tester and Langridge, 2010; Morrell

et al., 2012), genomic selection capitalizes on the genotype–

phenotype relationship directly at the whole-genome level

and has been implemented in different breeding contexts

(Riedelsheimer et al., 2012; Technow et al., 2014; Yu et al.,

2016), and human complex traits and diseases (de los Campos

et al., 2010).

Different aspects of the selection and breeding process should

be examined, given the improved capacity in genomics, biotech-

nologies, and phenomics. Changes can be proposed at the over-

all program level or at different stages of a program (Bernardo,
390 Molecular Plant 12, 390–401, March 2019 ª The Author 2019.
2010; Xu et al., 2014; Kadam et al., 2016). Rather than asking

how technologies can enhance existing crop improvement

pipelines, we can ask about efficient designs enabled by

genomics (Technow et al., 2014; Xu et al., 2014; Zeng et al.,

2017). One such question is how to efficiently establish the

genotype–phenotype relationship so that reliable predictions

can be made to guide the exploration of the enormous genetic

space for selection. This is particularly the case for hybrid

crops because the number of potential hybrids is prohibitively

high for extensive testing (Figure 1A). Many field, vegetable,

and flower crops use hybrids, including maize, sorghum, and

sunflower. In addition, hybrid rice is being adopted and hybrid
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Figure 1. Potential Hybrids and Optimal De-
signs for Hybrid Prediction.
(A) Training set designs are needed to effi-

ciently explore the large search space of genetic

combinations.

(B) Representative subset selection can be con-

ducted by viewing the problem from different an-

gles. PAM is partitioning aroundmedoids. FURS is

fast and unique representative subset selection.

MaxCD is maximization of connectedness and

diversity. The training set is formed by the repre-

sentative subset shown by boldface circles, and

the whole set is shown by all circles.
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wheat research has received new attention. With given

resources, identifying superior hybrids through genomics-

enabled approaches from a huge number of potential combina-

tions is a standing challenge.

Data mining, the process of knowledge discovery from data, has

been widely used in many areas by drawing strength from statis-

tics, machine learning, pattern recognition, information retrieval,

and network science (Han et al., 2011). Finding an informative

subset from a large collection of data objects, or representative

subset selection (Pan et al., 2005), is central to many problems

in social network, recommender systems, health informatics,

and image processing, for which numerous data-mining

techniques have been developed to deal with this challenge

(Elhamifar et al., 2014). In the context of genomic selection,

representative subset selection is a logical choice to exploit the

available genotyping data to design the training set, for which

the phenotypic data will be collected to establish the genotype–

phenotype relationship (Figure 1B).

Previous research efforts were devoted to the feasibility of

genomic selection, statistical models of the genotype–phenotype

relationship, and empirical testing and implementation (Morota

and Gianola, 2014). The accuracy of genomic prediction is

influenced by the genetic similarity between the training set and

prediction set, and phenotypic diversity of the training set

(Albrecht et al., 2011; Rincent et al., 2012; Miedaner et al.,

2013). Notably, research in training set design for inbred

populations (Rincent et al., 2012; Akdemir et al., 2015; Isidro

et al., 2015; Lorenz and Smith, 2015; Marulanda et al., 2015)

showed promising results. These studies focused on two

parameters derived from the mixed model equation, either

minimizing the mean of prediction error variance (PEVmean) or

maximizing the mean of coefficient of determination (CDmean),

and used either exhaustive search or a genetic algorithm.

Genomic prediction and training population design in hybrids

differ from that in inbreds. First, while genomic estimated

breeding values are generated for inbreds, predicted genotypic

values are generated for hybrids using the covariancematrix con-

taining both additive and dominance genomic relationship

matrices. Second, besides genetic relationship among parental

inbreds, half-sib relationship is introduced in the crossing pro-
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cess. Third, unlike the inbred population

where all individuals are already derived

and available, only hybrids in the training
set and those chosen based on predicted values need to be

derived and phenotyped. Finally, saving the process of obtaining

and phenotyping unfavorable hybrids highlights the additional

importance of design in genomic prediction for hybrids, the num-

ber of which is a function of parental inbreds.

In this study, we examined the training set design for hybrid per-

formance prediction among available inbreds that constitute the

overall genetic space fromwhich hybrid combinations need to be

selected. For hybrid crops with established heterotic patterns

such asmaize, rye, and sorghum, the number of potential hybrids

is the product of the numbers of inbreds from different heterotic

groups (n13n2, where n1 is the number for one group and n2 is

the other group). For crops that heterotic patterns need to be

developed such as wheat, it is the quadratic (n(n � 1)/2) of the

inbred number (n).

We designed and tested three methods of representative subset

selection to establish a training set for genomic prediction in hy-

brids (Figure 1B). Maximization of connectedness and diversity

(MaxCD) was conceived by exploring patterns in genetic

relationships and phenotypic variations captured in a genetic

mating scheme. Partitioning around medoids (PAM) is a

clustering algorithm to classify objects into clusters by

minimizing the sum of dissimilarities between the objects

labeled in a cluster and a designated center object (medoid) of

that cluster (Kaufman and Rousseeuw, 1987, 2009; Jain et al.,

1999). Unlike other clustering algorithms, having these medoids

identified during the clustering process is desirable for

applications when a set of representative objects need to be

generated rather than having users select from clusters. Fast

and unique representative subset selection (FURS) comes from

graphic network analysis (Mall et al., 2013), where many

methods have been developed for sampling from graphs with a

large number of nodes and edges (Leskovec and Faloutsos,

2006). FURS deterministically selects a set of nodes from a

given graph to retain the topology of the graph without explicitly

performing community detection in the graph, and was shown

to be a better choice than some other techniques (e.g.,

SlashBurn, Forest-Fire, Metropolis, and Snowball Expansion)

(Mall et al., 2013). PAM, FURS, or similar data-mining

techniques have not been examined in genomic selection for

selecting the representative subsets as the training sets
0–401, March 2019 ª The Author 2019. 391



Figure 2. Patterns in Genomic Relationship and Phenotypes in Maize.
(A) PCA plot for 24 parental inbreds. TM, temperate and mixed; TS, tropical and subtropical.

(B) PCA plot for 276 hybrids. Hybrids are color coded into TM 3 TM, TS 3 TS, and TM 3 TS.

(C) Genomic relationship between inbreds in hierarchical cluster order.

(D) Phenotypic values of hybrids for flowering time (days).

(E) Ear height (cm).

(F) Grain yield (Mg ha�1).

For each hybrid in (D–F), inbred parents were ordered by hierarchical clustering. Inter-group hybrids (from factorial) were boxed in (D–F), and the

corresponding genomic relationship section in (C).
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for prediction. Quantitative genetics is needed to build the

genomic relationship matrix and then transform this matrix

into data matrices for different data-mining methods (see

Methods).
RESULTS

Pattern Discovery in Genomic Relationship and
Phenotypic Variation

We started the pattern discovery by first visualizing the genomic

relationship matrix of the 24 maize inbreds and 276 hybrids from

a half diallel mating scheme (every pair of inbreds crossed). These

inbreds were the founders of the nested association mapping

(NAM) population, excluding sweet corn and popcorn lines

(McMullen et al., 2009). Principal component analysis (PCA)

based on 10 million SNPs revealed the major separation,

agreeing with the germplasm origins: (1) temperate and mixed

(TM), or (2) tropical and subtropical (TS) (Figure 2). The hybrids

were also separated into three layers: TM 3 TM, TM 3 TS, and

TS 3 TS. Hierarchical cluster analysis of the genomic

relationship matrix enabled a direct reorganization of the
392 Molecular Plant 12, 390–401, March 2019 ª The Author 2019.
columns and rows of the matrix, revealing a clear pattern

among pairwise relationships, which is difficult to observe when

inbreds were randomly ordered. Working with this set of

materials with a clear diversity pattern facilitated the method

research.

In parallel, we visualized the grouping pattern of 276 single-

cross hybrids after analyzing their genotype data inferred

from parental inbreds (Supplemental Figure 1). Additive and

dominance genomic relationship matrices between hybrids

were derived. Each hybrid has a half-sib relationship with 44

other hybrids. When the matrices were organized by sorting

parental inbreds in the hierarchical cluster order, a global

pattern was readily detected: relationships were closer for hy-

brids with both parents from the same group than other

hybrids.

We phenotyped the 276 hybrids for flowering time (days to

anthesis), ear height, and grain yield (Figure 2, Supplemental

Figure 2, and Supplemental Table 1). With the ordered inbreds

for both row and column, we then visualized the phenotypic

values of hybrids for each trait (Figure 2D–2F). Agreeing with
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the general knowledge for these traits, the TM 3 TS inter-

group hybrids generally have trait values between two types

of intra-group hybrids for flowering time and ear height; but

for grain yield, inter-group hybrids have higher values. We

estimated variance components of each trait. While additive

variance is much higher than dominance variance for flowering

time and ear height, it is smaller for grain yield (Supplemental

Table 2).

Representative Subset Selection Methods

The patterns detected in inbred genomic relationship matrix,

hybrid phenotypic value matrices, and hybrid genomic relation-

ship matrices encouraged us to explore the training set design

question from three different angles: genetic mating structure,

cluster analysis, and graphic network analysis. For MaxCD,

representative subset selection was designed following the

pattern detected in the inbred genomic relationship matrix (see

Methods). First, we selected a set of hybrids with non-

overlapping parental inbreds to ensure they share one parent

with those remaining hybrids for which performance needs to

be predicted. Next, we selected a set of hybrids from pairs of in-

breds most distant from each other. Conceptually, the combina-

tion of these two sets ensures a good sampling in the designed

training set.

For PAM and FURS, representative subset selection was ap-

proached by treating hybrids as objects to be clustered based

on their distances (PAM) or nodes within a complex network

(FURS) (see Methods). Specifically, genetic covariance matrix

among hybrids was obtained through merging two hybrid

genomic relationship matrices (additive and dominance), which

can be calculated directly from genotype data, weighted by

two variance component estimates. In practice, the weights

can be substituted with a ratio based on prior knowledge.

Different values were compared to verify the sensitivity of ratio

to the representative subset selection. For PAM, a dissimilarity

matrix was obtained from the covariance matrix. All hybrids

were partitioned into k clusters and the medoid of each cluster

was chosen to form the representative subset (k hybrids). For

FURS, an undirected and unweighted graph was obtained

from the covariance matrix. k nodes from the network of all

nodes (hybrids) were chosen to form the representative subset

(k hybrids). Notably, the development and validation of

designed methods for training sets required phenotypic data,

which are not required in actual implementation of these

methods.

We also implemented the previously published methods

(PEVmean and CDmean through a genetic algorithm) (Akdemir

et al., 2015) developed for inbred populations by using the

covariance matrix containing both additive and dominance

genomic relationship matrices (see Methods). For comparison,

we also conducted random sampling of the training set.

Designing Training Set for Maize Hybrids from Diallel

We evaluated training set design methods (MaxCD, PAM,

FURS, PEVmean, and CDmean) and random sampling. We per-

formed genomic prediction by selecting a representative

subset as the training set for each method, and the remaining

hybrids as the testing set. These methods were conducted
with multiple subdiallel populations. In each run, 18 inbreds

were randomly selected to derive a set of 153 hybrids for

method comparison, and each method (including random sam-

pling) generated a single training set with a size of 9.2% of all

hybrids, which is a fixed number by the design of MaxCD

(Supplemental Table 3).

Prediction accuracy for all representative subset selection

methods was higher than random sampling (Figure 3A–3C).

They increased 16%–23% for flowering time, 10%–15% for ear

height, and 40%–46% for grain yield. In addition, the

differences between three designed methods and random

sampling were significant based on a Mann–Whitney U test

(P values <0.01). Moreover, representative subset selection

improved accuracy compared with PEVmean and CDmean for

all traits. We also conducted the training percentage analysis

for PAM, FURS, PEVmean, CDmean, and random sampling,

which have no restriction on the training set size. To achieve

the same accuracy, random sampling generally required a

larger training set than other methods. For example, for

flowering time and ear height, PAM or FURS with 12 hybrids

(8%) would achieve about the same level of prediction

accuracy as random sampling with 21 hybrids (14%)

(Supplemental Figure 3).

To understand the reasons underlying better prediction accu-

racy by representative subset selection methods, we exam-

ined two criteria (Laloë, 1993; Akdemir et al., 2015): (1)

connectedness between the training and testing sets and

(2) diversity within the training set. First, we quantified

connectedness for each hybrid in the testing set using the

maximum additive relationship value between this hybrid and

all training hybrids. The values for representative subsets

were distributed above 0.3, unlike random sampling where

the values were negative, indicating that some testing hybrids

are not well connected with the training set (Supplemental

Figure 4). Second, we quantified diversity of the training

set by obtaining the variance of the phenotypic values.

With representative subset selection, variances of hybrid

performance in the training set were generally larger than

those obtained with random sampling (Supplemental Table 4).

These results suggest that the joint effects of connectedness

and diversity are underlying the higher prediction accuracy

of representative subsets relative to randomly sampled

subsets.
Designing Training Set for Inter-group Maize Hybrids
from Factorial

Next, we focused on the analysis of the phenotype and genotype

data from a factorial mating scheme, whereby only hybrids be-

tween TM and TS were examined. The 143 inter-group hybrids

(TM 3 TS, Figure 2) were part of all maize hybrids from diallel,

which include both inter-group and intra-group hybrids, and a

new set of variance components were obtained (Supplemental

Table 2). For MaxCD with factorial mating scheme, the

same principle of maximizing connectedness and potential

phenotypic diversity was followed to obtain a representative

subset as the training set; for PAM and FURS, the same

procedure was used as with diallel but with updated variance

component estimates.
Molecular Plant 12, 390–401, March 2019 ª The Author 2019. 393



Figure 3. Representative Subset Selection Outperforms Random Sampling in Maize.
(A–C) Prediction accuracy by different sampling methods in maize diallel. (A) Flowering time, (B) ear height, (C) grain yield.

(D–F) Prediction accuracy by different sampling methods in maize factorial. (D) Flowering time, (E) ear height, (F) grain yield.

SE bar is from 50 runs of independent sampling.
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Method comparison was conducted with multiple subfactorial

populations. In each run the total number of hybrids was 80, and

each method generated a single training set with a size of 12.5%

of all the hybrids (Supplemental Table 3). Prediction accuracy

values of representative subset selection methods were higher

than random sampling for all three traits, although the difference

was not always significant (Figure 3D–3F). Compared with

random sampling, the accuracy of MaxCD, PAM, and FURS

increased 10%–16% for flowering time, 11%–20% for ear

height, and 12%–39% for grain yield. The reduction in the degree

of advantages with factorial (inter-group hybrids) versus diallel

(both inter- and intra-group hybrids) may be partially due to the

reducedoverall sample size. In addition, less pronounced patterns

among inter-grouphybridsplayeda role. For grain yield, heritability

for factorial (0.60) was higher than diallel (0.51), whichmay partially

explain the difference in prediction accuracy. However, because

factorial is part of diallel, a direct comparison of two mating

schemes would not be appropriate, and should be examined in

detail (Fritsche-Neto et al., 2018).
Designing a Training Set for Wheat Hybrids

A dataset of 2556 hybrids from a diallel with 72 wheat inbred lines

adapted to Central Europe (Zhao et al., 2015) was available to test

these training set designs for a crop inwhichhybridbreeding is still
394 Molecular Plant 12, 390–401, March 2019 ª The Author 2019.
at the early stage. These inbreds have been separated into two

sets of 36 lines belonging to two heterotic groups. The PCA plot

based on genotype data indicated that the separation between

these two groups was not strong (Figure 4A and 4B), which

agreed with the lack of intensive divergent selection. After

ordering the inbreds by hierarchical clustering, a detectable

grouping pattern emerged from the genomic relationship matrix

(Figure 4C). Phenotypically, the mean grain yield of the inter-

group hybridswas 10.833Mg ha�1, slightly higher than themeans

of crosses within each of the two groups (10.827 Mg ha�1 and

10.670 Mg ha�1) (Figure 4D), in general agreement with what

was expected from the genomic relationship matrix.

Method comparison was conducted with multiple subdiallel pop-

ulations. In each run, the total number of hybrids was 1770, and

each method (including random sampling) generated a single

training set with a size of 2.5% of all the hybrids (Supplemental

Table 3). The representative subset with each method resulted

in a higher prediction accuracy value than random sampling

(Figure 4E). The value increased 18% for MaxCD, 11% for

PAM, and 4% for FURS. Variance of prediction accuracy was

lower for these methods, which is desirable, than for random

sampling. While PEVmean, CDmean, and FURS had higher

accuracy than random sampling, the P values >0.01 showed no

statistically significant difference. In the training percentage



Figure 4. Representative Subset Selection Methods Applied to Wheat Hybrids.
(A) PCA plot for inbreds.

(B) PCA plot for hybrids.

(C) Genomic relationships among inbreds which were ordered by hierarchical clustering.

(D) Grain yield for hybrids (Mg ha�1). Inbred parents of the hybrids were ordered by hierarchical clustering for rows and columns.

(E) Mean prediction accuracy by different sampling methods in diallel.

(F) Mean prediction accuracy by different sampling methods in factorial.

SE bar is from 50 runs of independent sampling. In (C) and (D), only one of every three inbreds was shown to avoid the overlapping of labels, and the

section corresponding to inter-group hybrids (from factorial) is boxed.
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analysis, the advantages for PAM and FURS were observed at

the lower sample size end (Supplemental Figure 5).

We also extracted a factorial mating scheme for 420 hybrids

(35 females by 12 males) with the original, observed phenotype

data (Zhao et al., 2015). Applying representative subset

selection to this dataset, PEVmean, PAM, and MaxCD showed

slightly better prediction accuracy than random sampling

(Figure 4F), which may be explained by less strong patterns

observed in genotype relationships in factorial compared with

diallel. Restricting the method comparison to the wheat diallel

with the original observed phenotype data of 1604 hybrids

(Zhao et al., 2015), we obtained similar results. There was no

significant difference between random sampling and methods

of PEVmean, CDmean, and FURS, but PAM had significantly

higher accuracy than other methods (Supplemental Figure 6).

Collectively, these results suggest that representative subsets

work well even in populations without strong subdivision, and
that pattern detection and exploitation should be conducted

with multiple methods.
Designing a Training Set for Rice Hybrids

Finally, we examined a rice dataset of 1495 elite hybrids (Huang

et al., 2015). Of these hybrids, most (1439) were from indica 3

indica crosses, and we chose to study this set for its dominant

sample size (Figure 5A and 5B). Because these hybrids

constituted an incomplete factorial design, the representative

subset was selected by PAM and FURS, but not MaxCD. Sixty

percent of 1439 hybrids were randomly sampled for multiple

subpopulation analysis. In each run, a single training set was

constructed for each method with a size of 5% of all the

hybrids (Supplemental Table 3).

Genomic prediction was conducted for heading date, height,

grain weight, and grain length. For all four traits, both PAM and
Molecular Plant 12, 390–401, March 2019 ª The Author 2019. 395



Figure 5. Representative Subset Selection Methods Applied to Rice Hybrids.
(A) PCA plot for all rice hybrids.

(B) PCA plot for indica 3 indica hybrids.

(C) Prediction accuracy by different sampling methods for grain weight (g).

(D) Height (cm).

(E) Heading date (day).

(F) Grain length (mm).

Ind, indica; Jap, japonica. SE bar is from 50 runs of independent sampling.
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FURS gave significantly better predictions than random sampling

(Figure 5C–5F). The prediction accuracy increased 9%–13% for

grain length, 5%–11% for grain weight, 21%–25% for heading

date, and 11%–12% for height. PEVmean and CDmean

performed better than random sampling but not as well as PAM

and FURS. In the training percentage analysis, the advantage

of PAM and FURS was generally evident (Supplemental

Figure 7). These results demonstrated that representative

subset selection by either PAM or FURS could improve

prediction efficiency over the use of a random training set of

hybrids. Because of these hybrids were from a nationwide

variety registration (Huang et al., 2015), further extensive study

of the representative subset is likely generate informative

findings.

Using these rice data, we also investigated how different variance

component ratios affect the final prediction accuracy. This repre-

sents a scenario in which no empirical estimate is available. We

applied a sequential number of 0.1–1 with an interval of 0.1 for ra-

tio of dominance to additive variances (Supplemental Table 5).
396 Molecular Plant 12, 390–401, March 2019 ª The Author 2019.
Results across four traits were consistent in showing the

insensitivity of the variance ratio.
Overall Assessment

Through comparing different training set design methods, we

showed that representative subset selection methods performed

better than random sampling and that MaxCD, PAM, and FURS

performed better than PEVmean and CDmean. On the other

hand, different methods outperformed other ones in different

species–trait combinations. Among three newly examined

methods, MaxCD has the advantages of an easy layout, being

non-specific to trait, and no requirement of a ratio between addi-

tive and dominance variance. The actual size of the representa-

tive subset can be expanded to ensure adequate sampling of

the overall landscape of the genomic relationship matrix after

the ordering. This method is also a good choice if a defined set

of inbreds is to be crossed to establish an initial training set to

explore the hybrid space. MaxCD may also be examined for

training set design in inbreds and testcrosses, where every kth
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individual is selected based on the order from the hierarchical

cluster analysis of the genomic relationship.

In other scenarios where only a subset of all possible combina-

tions of inbreds are relevant for investigation due to physiological

or agronomic constraints, PAM would be a good choice. PAM

and FURS enjoy the flexibility to generate a representative subset

with different sizes. Visualization of the selection on top of the

inbred genomic relationship matrix can help check the space

coverage. To implement PAM, FURS, PEVmean, and CDmean

for genomic prediction in hybrids, the need of a ratio between ad-

ditive and dominance variance can be satisfied based on the

domain knowledge, the analysis of existing data, or the prelimi-

nary experiment to estimate the ratio. This requirement also

stresses the iterative nature of research in training set design as

breeding and agronomic practices evolve. For practical applica-

tions, different selected sets made for different traits, through

different methods (PAM, FURS, PEVmean, and CDmean), can

be tabulated to identify a final common set.

DISCUSSION

The findings of this study were first uncovered through the empir-

ical maize research with a diallel, then confirmed through analysis

of inter-group hybrids and two previously released datasets in

wheat and rice (Huang et al., 2015; Zhao et al., 2015). Overall,

the designed methods showed promising prediction results.

The advantages of designed methods using data mining and

design thinking are mainly driven by the underlying patterns in

genomic relationships between materials, and patterns in

relationships between genomic and phenotype.

Conceptually, the divergence of temperate from tropical and sub-

tropical materials is analogous to the divergence of two heterotic

groups (typically stiff stalk and non-stiff stalk) in actual breeding

materials.Even thoughNAMfounderswereused in the initial inves-

tigation,we found that pattern discoverywith the proof-of-concept

small data was helpful in exploring different methods, which were

further investigated and validated with large datasets from more

relevantgermplasmsuchas inwheatand rice. In theory, estimation

of ratiobetweenadditiveanddominancevariances isneeded for all

methods exploring the genetic relationship of hybrids. If no pheno-

type data can bemined for estimation, the prior knowledge of rele-

vant traits available in the literature canbeused.On theother hand,

this also highlights the iterative processof updating training sets as

breeding and agronomic practices evolve.

In this study, we investigated using small sets of hybrids in three

species to predict the performance of the large genotype space

of all hybrids. Our choice of the percentage was based on prelim-

inary investigation to obtain reasonable prediction accuracy, and

the generally recommended 15% from data-mining literature

(Han et al., 2011). The upper bound of percentage we

examined was 32%, which provided a comparison context. The

exact optimal percentage of training set would vary with the

size of the overall set and can be data specific. Given the large

number of hybrid combinations, focus needs to be on optimal

design with a small training set, rather than trying to identify the

optimal percentage. Our analyses did show that the increase in

predication accuracy generally started leveling off around or

before 15% for eight species–trait combinations. In practice,
available resources will have to be considered, and the initial

training set may be gradually expanded as more data are

collected and mined.

Assembling optimal training sets enables a forward-looking, de-

signed approach so that a prediction-guided genotype search

can be conducted with the most relevant germplasm and cultiva-

tion for data generation and knowledge discovery. This comple-

ments the efforts to mine existing performance data for current

and historical hybrids to develop the genotype–phenotype pre-

diction model, although consideration must be given to the

changes of planting density and nitrogen application rate associ-

ated with the historical records (Duvick, 2005). Meanwhile, a few

studies explored efficient genomic mating (Kinghorn and

Shepherd, 1994; Shepherd and Kinghorn, 1998; Kinghorn,

2011; Akdemir and Isidro Sanchez, 2016), most of which had

successful results from simulation studies. The hybrids training

set selection using data-mining methods incorporated with

efficient genomic mating algorithms will provide new thinking

with regard to the overall hybrid breeding process.

Furthermore, different data-mining techniques (Han et al., 2011)

can be applied to questions beyond the initial training set

design—for example, designing the validation set to balance

prediction improvement and commercial hybrid identification,

or finding the optimal balance between short-term gain and

long-term potential of the program.

Streamlining genomic selection using analytical methods could

greatly reduce costs and maximize profits (Riedelsheimer et al.,

2012; Technow et al., 2014; Xu et al., 2014). Pattern discovery,

prediction-guided search, and accurate prediction based on

sound pattern discovery are likely to become more critical to

reducing time and cost when these resources are in short supply.

Data-mining methods we introduced in this and earlier studies

(Rincent et al., 2012; Akdemir et al., 2015; Isidro et al., 2015)

could be further improved and extended. More broadly, data-

mining tools could also be tested for identifying the most

important and relevant genetic materials for different genomics-

enabled processes: parental selection and inbred development,

assembling core phenotyping panels from gene bank collections,

or narrowing down the candidate list for comprehensive pheno-

typing. Extensive genomic profiling with transcriptomics and me-

tabolomics across time points and tissues would greatly benefit

from a well-designed set of genetic materials. Research findings

through mining genomic and phenomic data can then inform the

designing decisions in future studies of complex traits in crops

and human diseases (de los Campos et al., 2010; Wray et al.,

2013; Gamazon et al., 2015).

METHODS

Maize Hybrids, Phenotyping, and Genotype Information

The germplasm collection used in the present study consisted of 24

diverse parents (Flint-Garcia et al., 2005). These parental lines were

classified into two main groups according to germplasm origin and

PCA: TM group with 11 inbred lines (B73, B97, Ky21, M162W, Mo17,

MS71, Oh43, OH7B, M37W, Mo18W, and Tx303) and TS group with 13

inbred lines (CML52, CML69, CML103, CML228, CML247, CML277,

CML322, CML333, Ki3, Ki11, NC350, NC358, and Tzi8). Single-cross hy-

brids of these inbreds were developed in a half diallel mating scheme,

including TM 3 TM and TS 3 TS intra-group hybrids, and TM 3 TS

inter-group hybrids.
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We evaluated 276 single-cross hybrids at two locations (Columbia, MO

and Clayton, NC) in 2005 and 2006 for three traits: flowering time (day),

ear height (cm), and grain yield (Mg ha�1). Flowering time was measured

as the number of days to pollen shed from planting (i.e., days to anthesis),

ear height as the distance from the ground to the primary ear-bearing

node, and grain yield as harvest weight corrected to 15.5%moisture. After

combining data from two locations, a single set of best linear unbiased

prediction values was calculated using PROCMIXED in SAS 9.3 software

(SAS Institute).

Genotype data for inbreds were extracted from the Maize HapMap V2

(Chia et al., 2012) at www.panzea.org. There were 10 296 310 SNPs for

the 24 inbred lines. Missing genotypes were imputed with Beagle 4.1

(Browning and Browning, 2016). Genotype data for hybrids were

inferred from SNP data of the parental inbreds.

Additive and dominance variance components in the diallel were esti-

mated by using sA
2 = 2sGCA

2 and sD
2 = sSCA

2, where sGCA
2 and

sSCA
2 are variances of general and specific combining ability. Additive

and dominance variance components in the factorial design were esti-

mated as sA_P1
2 = sGCA_P1

2, sA_P2
2 = sGCA_P2

2, and sD
2 = sSCA

2, where

P1 is one group of individuals and P2 is the second group of individuals.

These component estimates were used in generating the covariance

among hybrids.
Pattern Discovery and Visualization

For inbreds, the genomic relationship matrix (G) was calculated as

G =
WW0

2
P

piqi
, where W is a matrix of centered genotypes, pi is the ma-

jor allele frequency of locus i qi is the minor allele frequency. PCA was

conducted with G as the input using the function prcomp in R (R Core

Team, 2013). A dissimilarity matrix was obtained by transforming G

using the agglomeration method with the option of ‘‘centroid,’’ and

this dissimilarity matrix was used for hierarchical cluster analysis

(HCA) to obtain the sorting order of inbreds using the function

hclust in R (R Core Team, 2013).

The additive genomic relationships (A) among hybrids was calculated as

A=
ZZ0

2
P

piqi
where Z is a matrix of centered genotypes with (0–2pi),

(1–2pi), and (2–2pi) for three different genotypes, pi is the major

allele frequency of locus i qi is the minor allele frequency.

The dominance genomic relationship matrix (D) was calculated as

D =
HH0

2
P

piqið1� 2piqiÞ, where H is a matrix of centered genotypes

with (0–2piqi) and (1–2piqi) for homozygous and heterozygous at

locus i. The covariance matrix among hybrids was obtained as

sA
2A + sD

2D, where sA
2 and sD

2 are additive and dominance vari-

ances. A, D, and the covariance matrix can be organized by the order

of inbreds from HCA.
Genomic Prediction

Genomic prediction was conducted with the established genomic best

linear unbiased prediction approach considering both additive and domi-

nance effects (Bernardo, 1994; Xu et al., 2014). Preliminary analysis

with other methods (Morota and Gianola, 2014) did not identify

sizable differences. The training sets were established by either the

representative subset selection methods or random sampling for the

genotype–phenotype prediction model. The remaining, non-selected hy-

brids were used as the testing set. Prediction accuracy was calculated

as the correlation between the predicted genotypic values and the

observed phenotypes. Preliminary analysis indicated that the number of

hybrids in the training set determined by MaxCD is a reasonable number

for comparison, while the other two methods have the flexibility to select

an arbitrary number.
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Five sets of population data were analyzed: maize diallel, maize factorial,

wheat diallel, wheat factorial, and rice incomplete factorial. Genomic predic-

tionwas conducted by selecting 2.5%–12.5%of thewhole set of hybrids as

the training set (Supplemental Table 3). The choice of this range followed the

suggested value in representativesubset selection (<15%) (Hanet al., 2011).

For maize diallel, we conducted additional training percentage analyses for

random sampling, PEVmean, CDmean, PAM, and FURS by varying the

training sample size from 2% to 32% of the original whole set. Training

percentage analyses for wheat diallel and rice incomplete factorial were

also conducted for PAM, FURS, and random sampling, but not for

PEVmean and CDmean due to the high computational cost.

Multiple subpopulation analysis was conducted. A total of 50 subdiallel or

subfactorial populations were randomly sampled, and the size of these

subpopulations were from 55% to 70% of the original whole populations

(Supplemental Table 3). This size was chosen to ensure that the resulting

populations are not too small, but still vary among them. Accordingly, 50

prediction accuracy values were generated for different training set

selection methods with the same training set size: random sampling,

PEVmean, CDmean, PAM, FURS, and MaxCD.

Partitioning around Medoids

As a clustering method, PAM classifies objects into clusters by minimizing

the sum of dissimilarities between the objects labeled to be in a cluster

and a designated center object (medoid) of that cluster (Kaufman and

Rousseeuw, 1987, 2009). PAM is a good candidate for training set

design as it provides both the partition of all objects into clusters and

representative objects of clusters. In practice, in addition to genotype

data, a ratio between additive and dominance variance components is

needed to derive the covariance matrix and can be fulfilled with prior

knowledge of the target trait. The covariance matrix for hybrids was

then transformed to a dissimilarity matrix.

Input: a user defined k number of clusters (kmedoids) to be found among

n objects; a dissimilarity matrix D among n objects.

Output: a set of k clusters and their medoids.

Steps:

(1) arbitrarily choose k objects inD as the initial representative objects

(oj, j = 1 to k);

(2) assign each remaining object to the cluster with the nearest repre-

sentative object;

(3) randomly select a non-representative object orandom;

(4) compute the total cost of swapping the representative object oj
with orandom;

(5) if the cost of swapping S < 0 then swap oj with orandom to form a

new set of k representative objects;

(6) repeat steps 2–5 until no change.

The total cost is defined as T =
Pk

i = 1

P

p˛Ci

distðp;oiÞ, where T is the sum of

the absolute error for all objects p in the dataset; Ci includes objects in

individual cluster; and oi is the representative object of Ci. Cost of swap-

ping (S) is the difference between current total cost and past total cost.

Fast and Unique Representative Subset Selection

As a graphic network method, FURS selects a subset of nodes at the cen-

ter of the communities in a large-scale network without explicitly perform-

ing community detection (Mall et al., 2013). In practice, the need and

solution to a variance component ratio to obtain the covariance matrix

are the same as for PAM. The covariance matrix for hybrids was

transformed into a correlation matrix. Applying a threshold value of 0.2

for either linked or unlinked pairwise connection to the correlation

matrix, we obtained a matrix of an undirected and unweighted graph

G = (V, E), where V is a finite set of nodes (hybrids) and E is a finite set

http://www.panzea.org
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of edges (links). The tuning parameter was applied in this method with the

number of 0.2 to transform weighted matrix to the unweighted graph,

which was selected after multiple practices.

Input: a user defined size k for representative nodes to be chosen among

all nodes; a network G = (V, E), a pair (u, v) is defined as an edge from node

u to node v.

Output: a subset of representative nodes S.

Steps:

(1) compute a list of nodes with their corresponding degree centrality

values L = (V, D(V)), where D is the degree distribution function of V;

(2) order the nodes based on their degree centrality values in de-

scending order;

(3) choose the node with highest degree centrality as one object in S;

(4) deactivate the immediate neighbors of this node because they can

be reached directly from this node;

(5) select the node with highest degree centrality among the active

nodes and place it into S;

(6) repeat steps 4 and 5 until all nodes are deactivated; stop the loop if

jSj reaches k; otherwise

(7) reactivate the deactivated nodes and repeat steps 3–6 until jSj = k.
Maximization of Connectedness and Diversity

We proposed MaxCD based on the characteristics of half diallel and

patterns embedded in a genomic relationship matrix among inbreds. It

selects hybrids for the training set by ensuring that every hybrid to be pre-

dicted shares at least one parent with a hybrid in the training set, and that

both intra-group and inter-group hybrids are sampled (Supplemental

Figure 8). Earlier research in genomic prediction (Jacobson et al., 2014;

Xu et al., 2014; Kadam et al., 2016) and mating design (Stich, 2009)

provided relevant findings for us to explore this representative subset

sampling design.

Input: inbred genomic relationship matrix.

Output: a set of representative hybrids.

Steps:

(1) order inbreds on genomic relationship matrix by HCA;

(2) remove reciprocals and selfs to obtain an isosceles right triangle;

(3) select every other hybrid on the long edge as representative;

(4) starting from vertex, select half of the consecutive hybrids along

the height of the triangle as representative.

Pattern examination in step 1 for genomic relationship matrix among in-

breds guides the selection of representative hybrids. After step 2, two

properties are found in the isosceles right triangle: (1) two neighboring hy-

brids have a closer relationship than each with a non-neighboring hybrid;

and (2) hybrids are interconnected through their shared parental inbreds

and genetic relationship of parental inbreds. Step 3 aims for strong

connectedness between the selected hybrids and leftovers (because the

selected hybrids are half sibs of unselected ones) and diversity (because

the inbreds are sorted and one hybrid was sampled for each inbred).

Step 4 aims for adding diversity because hybrids from less distant inbreds

need to be sampled and their phenotypic values can be different from hy-

brids from adjacent inbreds. ApplyingMaxCD to a half diallel with the num-

ber of n parental inbreds, the size of training set is ceiling (3/4n), the size of

testing set is floor (1/2n(n� 1)� 3/4n). The same ordering and sampling prin-

ciples can be extended to a diallel with more than two groups of inbreds.

MaxCD for factorial was designed based the same sampling principles.

Maximization of Connectedness and Diversity for Factorial

A factorial mating scheme is commonly used in crop-breeding programs

when two known groups of inbreds are used as either males or females.
The inter-group hybrids within a diallel are equivalent to hybrids from a

factorial mating scheme. MaxCD in a factorial mating scheme is designed

as follows (Supplemental Figure 8).

Input: inbred genomic relationship matrix.

Output: a set of representative hybrids.

Steps:

(1) order inbreds on genomic relationship matrix by HCA and

retain only one section corresponding to the inter-group hybrids

(factorial part);

(2) draw both diagonal lines of the rectangle;

(3) identify all hybrids in cells that are crossed by the diagonal lines;

(4) select every other hybrid along each diagonal line as

representative.

Step 1 is made to reveal the general pattern of hybrids from four areas: up-

per left, upper right, lower left, and lower right. The closer the hybrids are

to one of the four corners, the more typical they represent other hybrids

from that area. For a factorial mating scheme with one set of n1 inbreds

and the second set of n2 inbreds, MaxCD results in a training set of n1
(given that n1 > n2) and a testing set of n1n2 � n1.

PEVmean and CDmean

MethodsofPEVmeanandCDmeanwereconductedbyusing theRpackage

STPGA version 4.0 (Akdemir, 2014; Akdemir et al., 2015) and function

GenAlgForSubsetSelectionNoTest. It uses a genetic algorithm to select

training individuals so that optimality criterion is reached. We used

optimality criterion of ‘‘PEVMEAN’’ for method PEVmean and criterion of

‘‘CDMEAN’’ for method CDmean. The number of iterations in

implementing the genetic algorithm was 100 when population size was

larger than1000, and200otherwise.Allotherparametersweresetasdefault.

Wheat Hybrids

A set of 1604 wheat hybrids produced from crosses among 120 female

lines and 15 male lines were evaluated for grain yield in 11 environments

(Zhao et al., 2015). Grain yield data for all 9045 unique hybrids from

these 135 parental lines were predicted based on those of the

phenotyped individuals (Zhao et al., 2015). Following earlier findings, we

extracted a half diallel of 2566 hybrids, which were crosses among 72

inbreds (SI Dataset). Genotypes of hybrids were inferred from 72

inbreds with 17 372 SNPs. In addition, we also extracted a factorial

mating scheme for 420 hybrids (35 females by 12 males) with the

original observed phenotype data. The same procedures as in maize

were used to obtain the variance components (Supplemental Table 6),

which were then used in constructing the covariance among hybrids.

Rice Hybrids

The rice hybrid panel consisted of 1495 hybrids (Huang et al., 2015). Most

of these hybrids (1,439) were indica 3 indica crosses. The rest were 18

indica 3 japonica crosses and 38 japonica 3 japonica crosses. The

1495 hybrids were evaluated for heading date (day), height (cm), grain

weight (g), and grain length (mm) for 2 years at two locations in the

original publication. We focused on the analysis of 1439 indica 3 indica

hybrids and the phenotype data from Sanya (presented in the main text

of the original manuscript) for genomic prediction in this study. Analysis

of the second environment was also conducted. These hybrids were

directly genotyped with 1 654 030 SNPs, and no genotype information

of parental inbreds was available (Huang et al., 2015). We estimated the

additive and dominance variance components through the mixed model

(Supplemental Table 6).

Variance Component Ratio

For PAM, FURS, PEVmean, and CDmean, a variance ratio is needed to

construct the covariance matrix. In our method comparison, where
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phenotype data are available, variance component ratios were directly

obtained through either the standard analysis procedures of mating de-

signs when the layout of inbred crossing is known (maize and wheat) or

the mixed model procedure by fitting marker-derived additive and domi-

nance relationship matrices simultaneously when the layout of the inbred

crossing is not available (rice).

To examine the scenario in which no phenotype data are used and no

empirical estimates are available, we conducted computer stimulations

based on 40% of the rice data by setting up the ratio of dominance to ad-

ditive variance to vary from 0.1 to 1.0 to construct the input covariance

matrix for representative subset selection. Once the training set was

selected, genomic prediction was conducted to assess the prediction ac-

curacy. This procedure was repeated 50 times for each trait and each

method (PAM, FURS, and random sampling) to obtain the average predic-

tion accuracy.

Data and Code Access

Original and processed phenotype data for maize hybrids, processed

phenotype data for wheat hybrids, and original rice hybrids are included

as Supplemental Data 1, 2, and 3, respectively. R scripts for

representative subset selection through MaxCD, PAM, and FURS are

available at GitHub (https://github.com/TingtingGuo0722/OptimalDesign).
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