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ABSTRACT

This dissertation is composed of three research projects focused on functional data

analysis and machine learning predictive inference.

The first project deals with the covariance estimation, principal component analysis,

and prediction of spatially correlated functional data. We develop a general framework

and fully nonparametric estimation methods for spatial functional data collected under a

geostatistics setting, where locations are sampled from a spatial point process and a ran-

dom function is discretely observed at each location and contaminated with a functional

nugget effect and measurement errors. Unified asymptotic convergence rates are devel-

oped for the proposed estimators that are applicable to both sparse and dense functional

data. Simulation studies and analyses of two real-estate datasets show that our proposed

approach outperforms other state-of-the-art approaches.

In the second project, we present a novel application of functional modeling to plant

phenotypic data derived from crowdscourced images annotated by Amazon Mechanical

Turk (MTurk) workers. The goal of this study is to estimate the effect of genotype and

its interaction with environment on plant growth while adjusting for measurement errors

from crowdsourcing image analysis. We assume plant height measurements as discrete

observations of growth curves contaminated with MTurk worker random effects and het-

eroscedastic measurement errors. A reduced-rank functional model, along with a robust

and shape-constrained estimation approach, is developed for growth curves and deriva-

tives that depend on replicates, genotypes, and environmental conditions. As byprod-
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ucts, the proposed model leads to a new method for assessing the quality of MTurk

worker data and an index for measuring the sensitivity to drought for various genotypes.

In the third project, we propose a new approach to constructing random forest pre-

diction intervals that utilizes the empirical distribution of out-of-bag prediction errors,

and provides theory that guarantees asymptotic coverage for the proposed intervals. We

perform extensive numerical experiments along with analysis of 60 real datasets to com-

pare the finite-sample properties of the proposed intervals with two state-of-the-art ap-

proaches: quantile regression forests and split conformal intervals. The results demon-

strate the advantages, reliability and efficiency of the proposed approach.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Spatially Correlated Functional Data

Statistical methodology and theory for analysis of indepedent functional data have

been well developed and studied in the past decades (Ramsay and Silverman, 2005; Yao

et al., 2005; Ferraty and Vieu, 2006). However, it is often unrealistic to assume indepen-

dence in many real applications, especially when the functional data are collected over

space or time (Hörmann and Kokoszka, 2010). Therefore, It is reasonable to expect that

the functional data observed at one location may be naturally correlated with the obser-

vations in the neighboring area to some extent. The violation of independence assump-

tion has motivated recent research on dependent functional data, including multi-level

functional data (Crainiceanu et al., 2009; Xu et al., 2018a), functional time series (Aue

et al., 2015; Paparoditis, 2018), and spatially dependent functional data (Baladandayutha-

pani et al., 2008; Zhou et al., 2010; Staicu et al., 2010; Gromenko et al., 2012; Zhang et al.,

2016a,b; Liu et al., 2017).

Most existing papers on spatially dependent functional data focused on modeling and

methodology developments; and those with theoretical justifications usually considered

the ideal situation where the trajectories of functional data are fully observed. In prac-

tice, functional data are often observed on discrete time points and the measurements

are contaminated with errors. Based on the number of observations on each curve, func-

tional data are traditionally classified as sparse functional data (Yao et al., 2005) and dense

functional data (Hall et al., 2006). For independent functional data, it is known that the

convergence rates for various functional estimators (such as the mean, covariance and
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principal components) are different under different sampling schemes. There is also a

grey zone between sparse and dense functional data where the convergence rate of a

functional estimator is between nonparametric and parametric rates. Many recent re-

search efforts focused on developing unified estimation and inference strategies for all

types of functional data (Li and Hsing, 2010; Zhang and Wang, 2016; Wang et al., 2018).

No such results yet exist for spatially dependent functional data. In addition, functional

nugget effects have not been studied in the literature.

In Chapter 2, motivated by two real-estate datasets, we propose a general framework

and estimation methods for spatially dependent functional data collected under a geo-

statistics setting, where locations are sampled from a spatial point process and a ran-

dom function is observed at each location. We assume that the functional response is

the sum of a temporal process that is spatially correlated with neighboring functions

and a location-specific random process which characterizes the local variations and is

independent from neighbors. The location-specific random process is also interpreted as

the “nugget” effect following classic geostatistics literature (Cressie, 1993). Observations

on each function are made on discrete time points and contaminated with measurement

errors. Under the assumption of spatial stationarity and isotropy, we propose a tensor

product spline estimator for the spatio-temporal covariance function. If a coregionaliza-

tion covariance structure (Banerjee et al., 2003; Gelfand et al., 2004) is further assumed, we

propose a new functional principal component analysis method that borrows information

from neighboring functions. Byproducts of our approach also include nonparametric es-

timators for the spatial covariance functions of the principal component scores. The pro-

posed method also generates nonparametric estimators for the spatial covariance func-

tions, which can be used for functional kriging. Under an increasing domain asymptotic

framework (Guan et al., 2004; Li and Guan, 2014), we develop unified asymptotic con-

vergence rates for the proposed estimators that are applicable to both sparse and dense
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functional data and allow the number of observations per curve to be of any rate relative

to the number of functions.

1.2 Functional Modeling of Crowdsourced Growth Data

In the literature, functional data analysis (Ramsay and Silverman, 2005) has been ex-

tensively applied to growth studies which give rise to longitidual data measured for ex-

perimental units or subjects over time (Diggle et al., 2002; Fitzmaurice et al., 2012). As

examples of recent relevant work, Dai et al. (2017) proposed a new estimation approach

to estimating derivatives with an application to Tammar Wallaby growth data, and Xu

et al. (2018b) analyzed the empirical dynamics of plant growth by the functional ANOVA

method. In these studies, functional data modeling has shown its advantages in model-

ing growth curves which are latent, smooth, and very often obscured by measurement

errors and contaminated observations.

Crowdsourcing is an effective technique for data collection popularly used in many

scientific areas. For example, Zhou et al. (2018) explored the use of crowdsoucring to

segment corn tassels from images taken in the crop field; Can et al. (2017) discussed the

promising application of crowdscouring in wildlife research and conservation; In Grif-

fith et al. (2017), a new expert-crowdsourced knowledgebase was applied in the clinical

interpretation of variants in cancer; Fritz et al. (2017) describes a global dataset of crowd-

sourced land cover and land use reference data. Due to its low-cost, efficiency, and overall

high-quality advantages, the advent of crowdsourcing techniques has created intriguing

new opportunities for improving upon classical methods of data collection and annota-

tion (Lease, 2011). However, this approach also introduces challenging problems for data

analysis, such as quantifying and adjusting the unccertainty from crowdsourcing proce-

dures, evaluating data quality, detecting outliers, or handling disagreements among mul-
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tiple measurements on the same unit (Ruiz et al., 2019). All these problems, together with

wide availability of crowdsourced data, encourage researchers to develop new solutions

that are statistically and scientifically sound and practical. To name a few, recent method-

ological developments in analyzing crowdsourced data include Raykar et al. (2010), Ruiz

et al. (2016), and Giuffrida et al. (2018).

To our knowledge, our work presented in Chapter 3 is the first study that analyzes

crowdsourced growth data, motivated by a maize plant growth study conducted by a

group of plant scientists, engineers, and statisticians. The goal of this study is to identify

maize genotypes that are most sensitive or resistant to water stress in the context of the

entire growth development. The maize growth data were derived from high-throughput

phenotyping technology and crowdsourcing image analysis. During the growing sea-

son, maize plants of various genotypes were imaged by hundreds of cameras. Amazon

Mechanical Turk (MTurk) workers were hired to manually mark plant bodies on these

images, from which plant heights were obtained. We propose a novel functional data

model and a robust shape-constrained estimation procedure for plant height measure-

ments. Advantages of our proposed approaches are demonstrated by real data analysis

in Section 3.6 and synthetic experiments in Section 3.7.

1.3 Prediction Intervals for Random Forests

Diagnostics, interpretation, and uncertainty quantification of machine learning algo-

rithms have received increasing attention recently. Predictive inference (Lei et al., 2018;

Shen et al., 2018), as a branch of uncertainty quantification, is important for the analysis of

real-world data using machine learning algorithms. In Chapter 4 of this dissertation, we

focus on predictive inference for random forest methodology, originally proposed by Leo

Breiman (Breiman, 2001a) and one of the most popular machine learning techniques for
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prediction problems. There have been many methodological and theoretical adcances for

the random forest approach (Scornet et al., 2015; Biau and Scornet, 2016; Scornet, 2016a,b;

Xu et al., 2016; Friedberg et al., 2018).

When using random forests to predict a quantitative response, an important but often

overlooked challenge is the determination of prediction intervals that will contain an un-

observed response value with a specified probability. There are two existing approaches

for obtaining forest-based prediction intervals. One is the quantile regression forest ap-

proach (Meinshausen, 2006), which estimates the conditional distribution of the response

variable given the predictor vector. Lower and upper quantiles of an estimated condi-

tional distribution naturally provide a prediction interval for the response at any point

x in the predictor space. The other existing approach is the general technique of predic-

tion interval construction via split conformal (SC) inference (Lei et al., 2018). Prediction

intervals with guaranteed finite-sample marginal coverage probability can be generated

using SC inference in conjunction with any method for estimating the conditional mean

of a response given the predictor variable values in a vector x.

In Chapter 4, we propose new random forest prediction intervals that are based on

the empirical distribution of out-of-bag prediction errors. We also introduce four cover-

age probability types and explain the asymptotic properties of the proposed out-of-bag

random forest prediction intervals. Simulation studies in Section 4.5 and analysis of 60

real datasets in Section 4.6 are used to compare the finite-sample properties of the pro-

posed intervals with the two competing methods. We also create an R package rfinterval,

which provides an implementation of all the methods studied in Chapter 4.
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1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents the co-

variance estimation, principal component analysis, and spatial prediction of functional

data that are spatially correlated, with rigorous theoretical investigation. Chapter 3 re-

ports a novel application and case study of using functional modeling and robust esti-

mation to analyze longitudinal data extracted from crowdsourced images, and provides

answers to some challenging problems in plant science. Chapter 4 proposes new random

forest prediction intervals and compares this new interval methodology with two com-

peting methods by extensive numerical studies. This dissertation ends with a general

conclusion in Chapter 5 which consists of a brief summary and potential directions of

future research.

1.5 Role of Authors

Haozhe Zhang is the primary author and investigator of all research work included

in this dissertation. Dr. Yehua Li, Dr. Dan Nettleton, and other collaborators provided

advice on the direction of the research and contributed to editing of manuscripts.
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CHAPTER 2. SPATIALLY DEPENDENT FUNCTIONAL DATA:

COVARIANCE ESTIMATION, PRINCIPAL COMPONENT

ANALYSIS, AND KRIGING

Abstract

We consider spatially dependent functional data collected under a geostatistics set-

ting, where locations are sampled from a spatial point process and a random function

is observed at each location. The functional response is the sum of a spatially depen-

dent functional effect and a spatially independent functional nugget effect. Observations

on each function are made on discrete time points and contaminated with measurement

errors. Under the assumption of spatial stationarity and isotropy, we propose a tensor

product spline estimator for the spatio-temporal covariance function. When a coregion-

alization covariance structure is further assumed, we propose a new functional princi-

pal component analysis method that borrows information from neighboring functions.

The proposed method also generates nonparametric estimators for the spatial covariance

functions, which can be used for functional kriging. Under a unified framework for both

sparse and dense functional data, we develop the asymptotic convergence rates for the

proposed estimators. Advantages of the proposed approach are demonstrated through

simulation studies and two real data applications representing sparse and dense func-

tional data respectively.
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2.1 Introduction

2.1.1 Literature Review

Modern technology and data collection methods produce massive data with repeated

measurements over time and space, thus give rise to functional data (Ramsay and Silver-

man, 2005; Horváth and Kokoszka, 2012; Kokoszka and Reimherr, 2017). In many appli-

cations, functional data collected at different times or locations are naturally correlated.

There have been a lot of recent theory and methodology developments for dependent

function data, including multi-level functional data (Crainiceanu et al., 2009; Xu et al.,

2018a), functional time series (Hörmann and Kokoszka, 2010; Aue et al., 2015; Paparodi-

tis, 2018), and spatially dependent functional data (Baladandayuthapani et al., 2008; Zhou

et al., 2010; Staicu et al., 2010; Gromenko et al., 2012; Zhang et al., 2016b; Delicado et al.,

2010; Liu et al., 2017). There has also been some recent work on modeling spatio-temporal

point process data using a functional data approach (Li and Guan, 2014).

Functional data are commonly viewed as infinite dimensional random vectors in a

Hilbert space, and dimension reduction is crucial for visualization, interpretation and in-

ference on these data (Hsing and Eubank, 2015). There has been a lot of methodological

and theoretical developments on dimension reduction for independent data using the

functional principal component analysis (FPCA) (Yao et al., 2005; Hall et al., 2006; Li and

Hsing, 2010). The functional principal component scores are also widely used as predic-

tors in linear or nonlinearly regression models to predict other variables of interest (Cai

and Hall, 2006; Wong et al., 2019).

There has also been some work on FPCA on spatially dependent functional data.

Hörmann and Kokoszka (2013) provide some theoretical justification on spatial FPCA,

assuming the functions are fully observed. In practice, functional data are often observed

on discrete time points and the measurements are contaminated with errors. Based on
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the number of observations on each curve, functional data are traditionally classified as

sparse functional data (Yao et al., 2005) and dense functional data (Hall et al., 2006). For

independent functional data, it is known that the convergence rates for various functional

estimators (such as the mean, covariance and principal components) are different under

different sampling schemes. Wang et al. (2018) show that nonparametric hypothesis tests

have different properties under sparse and dense functional data, in terms of asymp-

totic null distribution and power. However, sparse and dense functional data are asymp-

totic concepts, which are not clearly defined in any practical contexts. A lot of recent

research efforts were focused on developing unified estimation and inference strategies

for all types of functional data (Li and Hsing, 2010; Zhang and Wang, 2016; Wang et al.,

2018). No such results yet exist for spatially dependent functional data.

2.1.2 Motivating Data Examples

Our work is motivated by two real data examples from business applications, repre-

senting sparse and dense spatially dependent functional data, respectively.

Example 1: sparse functional data on London house price. The data are public

records of home sales from the UK government website. The dataset includes all houses

with at least 5 transactions between Jan 1, 1995 and Dec 31, 2018 in the Greater Lon-

don area. Each transaction record contains information on the price, date, and property

address. The exact locations, including longitudes and latitudes, of these houses are ob-

tained using the Google Map by matching the property addresses, and shown in panel

(a) of Figure 2.1. The value of a house changes continuously over time, the trajectory of

which we model as functional data. However, the value is measured by the market only

when a sale is made, and the number of sale transactions per house ranges between 5 and
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12. The house price trajectories are shown in Panel (b) of Figure 2.1. As we can see, the

transaction times are random and house-specific.
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Figure 2.1: London house price data. (a) Locations of houses in the Greater London area;
(b) trajectory of the house prices and the estimated mean function (dashed line).

Example 2: dense functional data from Zillow Real Estate. Zillow (https://www.

zillow.com/research/data) publishes real estate data for research purposes for all major

cities in the US. The variable of interest here is the “home price-to-rent ratio”, defined as

the ratio of residential real estate price to the annual rents earned from that real estate,

which has attracted broad interests of economic and social researchers Campbell et al.

(2009); Kishor and Morley (2015). It has strong relationships with market fundamentals,

and has been widely used as an economic indicator for housing market bubbles. This

variable is updated monthly for geographical units called “neighborhoods” defined by

Zillow. The dataset we analyze consists of monthly median price-to-rent ratios from 234

neighborhoods in the San Francisco Bay Area from October 2010 to August 2018, with 95

https://www.zillow.com/research/data
https://www.zillow.com/research/data
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observations on each curve at a missing rate of 1.48%. Figure 2.2 illustrates the geographic

locations of these neighborhoods and their price-to-rent ratio trajectories.
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Figure 2.2: (a) The locations of 234 neighborhoods in the San Francisco Bay Area; (b)
trajectories of home price-to-rent ratios, observed monthly from October 2010 to August
2018 in the 234 neighborhoods.

2.1.3 Our Contributions

We propose a unified FPCA method that is applicable to both sparse and dense func-

tional data collected under a geostatistics setting, where locations are sampled from a spa-

tial point process. We assume that the trajectory of a random function is determined by

two effects: a temporal process that is spatially correlated with neighboring functions and

a location-specific random process independent from neighbors. The location-specific

random process is also interpreted as the “nugget” effect following classic geostatistics

literature(Cressie, 1993). Observations on each function are made on discrete time points
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and contaminated with measurement errors. Under the assumption of spatial stationarity

and isotropy, we propose a tensor product spline estimator for the spatio-temporal covari-

ance function. If a coregionalization covariance structure (Banerjee et al., 2003; Gelfand

et al., 2004) is further assumed, we propose a new FPCA method that borrows informa-

tion from neighboring functions. Byproducts of our approach also include nonparametric

estimators for the spatial covariance functions of the principal component scores. Under

an increasing domain asymptotic framework (Guan et al., 2004; Li and Guan, 2014), we

develop unified asymptotic convergence rates for the proposed estimators which describe

the phase transition from sparse to dense functional data.

The rest of this chapter is organized as follows. We introduce the model and frame-

work in Section 2.2, propose our estimation procedure in Section 2.3, and investigate the

theoretical properties of the proposed estimators in Section 2.4. We address some impor-

tant implementation issues in Section 2.5 and further extend our method for functional

kriging in Section 2.6. Numerical performance of the proposed methods is illustrated

by simulation studies in Section 2.7, where we also show existing methods ignoring the

functional nugget effect can lead to biased results. We analyze the two motivating data

examples in Section 2.8 and provide concluding remarks in Section 2.9. Technical proofs

of the main theorems and additional figures from our numerical studies are collected in

the Supplementary Material.
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2.2 Model and Assumptions

2.2.1 Random field modeling for spatially dependent functional data

Suppose random functions of time defined on a time domain T are sampled from

locations in a spatial domain Dn ⊆ R2. Let Yij = Y(sssi, tij) be the discrete observation at

time tij on the random curve sampled at spatial location sssi, i = 1, . . . , N, j = 1, . . . , Mi,

and assume the following model

Y(sssi, tij) = X(sssi, tij) + Ui(tij) + εij, (2.1)

where X(·, ·) is a spatio-temporal process on Dn × T representing a spatially correlated

functional effect, {Ui(·)} are zero-mean, independent temporal processes called the func-

tional nugget effects, and {εij} are the independent measurement errors with E(εij) = 0

and Var(εij) = σ2
ε . The functional nugget effects Ui(·) characterize local variations that

are not correlated with neighboring functions, with the covariance function denoted by

Λ(t1, t2) = Cov{U(t1), U(t2)}. Assuming that the spatial dependency is second-order

stationary and isotropic, the general covariance function of X(sss, t) can be written as

R(‖sss1 − sss2‖, t1, t2) = Cov{X(sss1, t1), X(sss2, t2)}, (2.2)

for any (sss1, t1), (sss2, t2) ∈ Dn × T. In addition, we consider X(sss, t) as spatial replicates of a

temporal process with a standard Karhunen-Loève expansion

X(sss, t) = µ(t) + ∑∞
j=1 ξ j(sss)ψj(t), (2.3)

where µ(t) = E {X(sss, t)}, ψj(·)′s are orthonormal functions known as the principal com-

ponents, and the principal component score ξ j(sss) =
∫

T{X(sss, t)− µ(t)}ψj(t)dt is the load-

ing of X(sss, t) on the jth principal component. We assume {ξ j(sss)} are zero-mean, second-

order stationary and isotropic random fields, that are uncorrelated across different j. Spa-

tial dependence among the function data is induced by the dependence within each ξ j(sss).
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Denote the spatial covariance function of ξ j(sss) as Cj(‖sss1 − sss2‖) = Cov{ξ j(sss1), ξ j(sss2)}, for

any sss1, sss2 ∈ Dn, then the covariance function for X(sss, t) can be written as

R(‖sss1 − sss2‖, t1, t2) = Cov
{

∑∞
j=1 ξ j(sss1)ψj(t1), ∑∞

j=1 ξ j(sss2)ψj(t2)
}

(2.4)

= ∑∞
j=1 Cj(‖sss1 − sss2‖)ψj(t1)ψj(t2). (2.5)

Denote vj = Cj(0) as the marginal variance for ξ j(sss), and assume the principal compo-

nents are ordered according to their magnitudes such that v1 ≥ v2 ≥ · · · > 0. It is easy

to see that vj’s and ψj(t)’s are the eigenvalues and eigenfunctions of the covariance func-

tion R(0, t1, t2), which reveals an important connection between our model and classic

models for independent functional data. The functional nugget effect Ui(·), on the other

hand, may have an entirely different covariance structure with different eigenvalues and

eigenfunctions.

Note that the same FPC expansion as (2.3) was promoted by Horváth and Kokoszka

(2012) for spatially dependent functional data, who argued that, even if stationarity in

space is mildly violated, the mean and eigenfunctions still provide meaningful marginal

summary statistics for the data. By allowing different orders of FPC score to have different

spatial covariance, covariance structure in (2.4) is a “coregionalization” model (Banerjee

et al., 2003; Gelfand et al., 2004), which is the sum of many separable spatio-temporal

covariance functions.

2.2.2 Sampling scheme for spatial locations and observation times

The spatial locations {sssi} are assumed to be sampled from a spatial point process de-

noted asNs(·). The simplest spatial point process is the inhomogeneous Poisson process,

where given the total number the locations are independent and identically distributed

random variables. A point process can be used to describe more complicated location

patterns, such as clustered or regular patterns (Cressie, 1993). The correlation between
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locations are described by the higher-order intensity functions. For any location sss, let dsss

be a small neighborhood around sss, and denote |dsss| as the area of dsss and Ns(dsss) as the

number of locations sampled in dsss. The k-th order intensity function (Cressie, 1993) of

Ns(·) is defined as

λs,k(sss1, . . . , sssk) = lim
|dsssr | → 0,

r = 1, . . . , k

E {Ns(dsss1) . . .Ns(dsssk)}
|dsss1| . . . |dsssk|

, (2.6)

and we assumeNs has up to the 4-th order intensity function well defined. The collection

of observation time points on Y(sss, ·) is a realization of a temporal point process Nt(dt|sss).

Assume that temporal point processes at different locations are independent and identi-

cally distributed. Denote the first and second intensity functions of Nt(·|sss) as

λt,1(t) = lim
|dt|→0

ENt(dt|sss)
|dt| , λt,2(t1, t2) = lim

|dt1|,|dt2|→0

E {Nt(dt1|sss)Nt(dt2|sss)}
|dt1‖dt2|

, (2.7)

which are independent of Ns(dsss). This setting also implies that the number of repeated

measures on Y(sssi, ·) is a random variable Mi =
∫

TNt(dt|sssi)dt. As further discussed in

Section 2.4, we do not require Ns(·) or Nt(·|sss) to be stationary, but rather need the inten-

sity functions of these point processes to be bounded from zero so that we have a positive

chance to sample from any location and time. We can also define the joint point process

for sampling locations and times as N (dsss, dt) = Ns(dsss)Nt(dt|sss).

2.3 Estimation method

We now propose nonparametric estimators for various model components described

in Section 2.2, where the core issue is estimating the spatio-temporal covariance function

R(·, ·, ·) in (2.2). We then use the estimated covariance function to further derive estima-

tors for the principal components ψj(·) and spatial covariance functions Cj(·), which are

of fundamental importance to dimension reduction and understanding the spatial de-

pendence. We will also estimate the covariance function Λ(·, ·) for the functional nugget
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effect and the variance of the measurement error σ2
ε , which will be further used in the

functional kriging.

2.3.1 Estimation of the spatio-temporal covariance function

For ease of exposition, we assume µ(t) ≡ 0 for Sections 2.3 and 2.4. In practice, one can

estimate µ(t) using the smoothing method described in Section 2.5, center the response

as Ỹ(sssi, tij) = Y(sssi, tij)− µ̂(tij), and then the rest of our methods and theory still apply.

We will only estimate R(u, ·, ·) up to a pre-determined spatial distance ∆ > 0. As

pointed out by many authors (Hall et al., 1994; Li et al., 2007), spatial dependency usually

decays to zero beyond certain distance; the spatial covariance estimator at a large spatial

lag tends to be highly variable, consisting of more nuisance than signal. To determine

∆, one needs to get a rough estimate for the range of spatial dependency based on a pi-

lot study, for example using the nonparametric method in Li et al. (2007) based on a more

stringent separable sptio-temporal covariance structure. We consider R(u, t1, t2) as a func-

tion over a 3-dimensional domain H := [0, ∆]× T × T, and propose to estimate it using

3-dimensional tensor product B-splines. For independent functional data, many non-

parametric smoothing methods have been proposed to estimate the covariance function,

including kernel methods (Yao et al., 2005; Li and Hsing, 2010; Zhang and Wang, 2016),

tensor product B-splines (Cao et al., 2016), and penalized splines (Xiao et al., 2013). In

this study, we focus on tenor product regression spline methods for their computational

merits (Huang and Yang, 2004), but our methods and theory can be naturally extended to

other smoothers.

Let BBBT(t) = {Bpt
1,Kt

(t), Bpt
2,Kt

(t), . . . , Bpt
Kt+pt,Kt

(t)}T be a vector of normalized B-spline

functions (Schumaker, 1981; Huang and Yang, 2004; Cao et al., 2016) of order pt, defined

on the time domain T, where we assume T = [0, 1] without loss of generality, with equally
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spaced interior knots κj = j/(Kt + 1), j = 1, . . . , Kt, and denote the corresponding spline

space as S pt
Kt
[0, 1]. Similarly, let BBBS(u) = {B

ps
1,Ks

(u), Bps
2,Ks

(u), . . ., Bps
Ks+ps,Ks

(u)}T be a vector

of B-spline basis functions on [0, ∆] with equally spaced interior knots, where the order

ps and number of knots Ks can be different from pt and Kt allowing different amount

of smoothing in spatial and temporal directions. The assumption of knots being equally

spaced is for ease of theoretical derivations, but can be relaxed in practice. Denote the

spline space spanned by BBBS(u) as S ps
Ks
[0, ∆]. Then the 3-dimensional tensor product spline

space is defined as S[3] ≡ S
ps
Ks
[0, ∆]⊗ S pt

Kt
[0, 1]⊗ S pt

Kt
[0, 1], which is spanned by basis func-

tions Bj1 j2 j3(u, t1, t2) = Bps
j1,Ks

(u)Bpt
j2,Kt

(t1)Bpt
j3,Kt

(t2). Pool the tensor product spline basis

functions into a vector

BBB[3](u, t1, t2) = BBBS(u)⊗ BBBT(t1)⊗ BBBT(t2), (2.8)

where ⊗ is the Kronecker product.

Define Ns,2(dsss1, dsss2) := Ns(dsss1)Ns(dsss2)I(sss1 6= sss2), and the tensor product spline esti-

mator of the spatio-temporal covariance function is

R̂(·, ·, ·) = argmin
g(·,·,·)∈S[3]

∫
Dn

∫
Dn

∫
T

∫
T
{Y(sss1, t1)Y(sss2, t2)− g(‖sss1 − sss2‖, t1, t2)}2

×I(‖sss1 − sss2‖ ≤ ∆)Nt(dt1|sss1)Nt(dt2|sss2)Ns,2(dsss1, dsss2), (2.9)

where I(·) is the indicator function. The estimator above can be equivalently written as

R̂(u, t1, t2) = BBBT
[3](u, t1, t2)β̂ββ, where β̂ββ minimizes the following least square loss function

L(βββ) =
N

∑
i=1

∑
i′ 6= i

‖sssi − sssi′ ‖ ≤ ∆

Mi

∑
j=1

Mi′

∑
j′=1

{
YijYi′ j′ − BBBT

[3]

(
‖sssi − sssi′‖, tij, ti′ j′

)
βββ
}2

. (2.10)

The numbers of knots Ks and Kt decide the amount of smoothing and are deemed as

tuning parameters, which can be selected by data-driven methods described in Section

2.5.
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2.3.2 Estimation of the functional principal components

When the coregionalization structure in (2.4) is assumed, define

Ω(t1, t2) :=
∫ ∆

0
R(u, t1, t2)W(u)du =

∞

∑
j=1

ωjψj(t1)ψj(t2), (2.11)

where W(·) ∈ L2 is a non-negative and bounded weight function, and the principal

component score is denoted as ωj :=
∫ ∆

0 Cj(u)W(u)du. For all numerical studies in this

study, we use a simple weight functionW(u) ≡ 1 for u ∈ [0, ∆] and 0 otherwise. It is easy

to see that the FPCs ψj(t) are eigenfunctions of Ω(·, ·). An estimator of Ω(·, ·) is obtained

as

Ω̂(t1, t2) =
∫ ∆

0
R̂(u, t1, t2)W(u)du, (2.12)

and the estimated eigenvalues and eigenfunctions of Ω(·, ·), denoted as {ω̂j, ψ̂j(t)}, are

obtained by solving the eigen-decomposition problem∫
T

Ω̂(t1, t2)ψ̂j(t1)dt1 = ω̂jψ̂j(t2), j = 1, 2, . . . , (2.13)

subject to the orthonormal constraints
∫

T ψ̂j(t)ψ̂j′(t)dt = I(j = j′).

From the right hand side of (2.12), it is easy to see that all B-splines in the spatial direc-

tion are integrated out, and Ω̂(·, ·) is contained in a bivariate tensor product spline space

S[2] spanned by the basis BBB[2](t1, t2) := BBBT(t1) ⊗ BBBT(t2). Hence, the functional eigen-

decomposition problem in (2.13) can be translated into a multivariate problem (Li and

Guan, 2014). Notice that our estimator Ω̂(·, ·) is inherently symmetric. We can arrange

the coefficient vector into a symmetric matrix ŜSS, so that Ω̂(t1, t2) = BBBT
T(t1)ŜSSBBBT(t2). Define

an inner product matrix J =
∫

T BBBT(t)BBBT
T(t)dt, then the eigen-decomposition problem in

(2.13) is equivalent to the multivariate generalized eigenvalue decomposition

φ̂T
j J ŜSSJ φ̂j = ω̂j, subject to φ̂T

j′J φ̂j = I(j = j′), (2.14)

and ψ̂j(t) = BBBT
T(t)φ̂j, j = 1, 2, . . ..
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2.3.3 Estimation of the spatial covariance and correlation functions

By the orthogonality of ψj(t)’s and (2.4),

Cj(u) =
∫

T

∫
T

R(u, t1, t2)ψj(t1)ψj(t2)dt1dt2, (2.15)

which motivates the following estimator of the spatial covariance function

Ĉj(u) =
∫

T

∫
T

R̂(u, t1, t2)ψ̂j(t1)ψ̂j(t2)dt1dt2. (2.16)

We then estimate the variance of the jth FPC by v̂j = Ĉj(0) and estimate the spatial

correlation function ρj(u) = Cj(u)/C(0) by

ρ̂j(u) = Ĉj(u)/Ĉj(0). (2.17)

2.3.4 Covariance estimation for the functional nugget effect

Define Γ(t1, t2) := R(0, t1, t2) +Λ(t1, t2). By independence between X(sssi, t) and the

functional nugget effect Ui(t), it is easy to see Cov {Y(sss, t1), Y(sss, t2)} = Γ(t1, t2) for t1 6=

t2, which motivates another spline estimator

Γ̂(·, ·) = argmin
g(·,·)∈SΓ

[2]

∫
Dn

∫
T

∫
T
{Y(sss, t1)Y(sss, t2)− g(t1, t2)}2 I(t1 6= t2)Nt(dt1|sss)Nt(dt2|sss)Ns(dsss).

(2.18)

Here, SΓ
[2] is a functional space of bivariate tensor product splines of order pΓ defined on

KΓ interior knots. This spline space can be defined on a different set of temporal knots

than those used to estimate R(·, ·, ·), thus allowing a different amount of smoothing. A

natural covariance estimator for the functional nugget effect is

Λ̂(t1, t2) = Γ̂(t1, t2)− R̂(0, t1, t2), (2.19)

where R̂(0, t1, t2) is the estimator defined in (2.9) evaluated at u = 0.
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2.3.5 Variance estimation for the measurement errors

The variance function of the response is σ2
Y(t) = Var{Y(sss, t)} = R(0, t, t) + Λ(t, t) +

σ2
ε = Γ(t, t) + σ2

ε . We estimate σ2
Y(t) by the following spline estimator,

σ̂2
Y(·) = argmin

g(·)∈Sε
[1]

∫
Dn

∫
T

{
Y2(sss, t)− g(t)

}2
Nt(dt|sss)Ns(dsss), (2.20)

where Sε
[1] is a univariate spline space of order pε defined on Kε interior knots. The fol-

lowing variance estimator is similar in spirit with those proposed by Yao et al. (2005) and

Li and Hsing (2010),

σ̂2
ε =

1
|T|

∫
T
{σ̂2

Y(t)− Γ̂(t, t)}dt. (2.21)

Both σ̂2
ε and Λ̂ are important quantities we will later use for functional kriging.

Remark. Many steps of our estimation procedure involve integration of (multivariate) spline

functions, including the calculation of Ω̂(·, ·), ψ̂j(·), Ĉj(·) and σ̂ε. In our implementation, we

compute the exact values of these integrals, using close-form expressions for integrals of B-spline

functions (de Boor, 2001, p. 128) and the Gram matrix of B-splines. Therefore, our computation is

efficient and fast.

2.4 Theoretical Properties

For any function f (·) (univariate or multivariate) defined on a compact support, de-

note ‖ f ‖L2 and ‖ f ‖∞ as its L2 and L∞ norms. For any positive sequences {an} and {bn},

we write an . bn if an/bn is bounded above by a constant, and an � bn if C1 ≤ an/bn ≤ C2

for all n and some C1, C2 > 0. For any subset E ⊂ R2, let FX(E) be the σ-algebra gener-



21

ated by {X(s, t) : (s, t) ∈ E× T}. Suppose the spatial dependence of the functional data

can be described by the following α-mixing coefficients (Rosenblatt, 1956):

αX(h) = sup
E1,E2⊂R2

dist(E1,E2)≥h

sup
A1∈FX(E1),
A2∈FX(E2)

|P(A1 ∩ A2)− P(A1)P(A2)|, (2.22)

where dist(E1, E2) denotes the minimal Euclidean distance between E1 and E2. We make

the following assumptions for our theoretical investigation.

Assumption 1. While the time domain T is fixed, consider a sequence of spatial domains {Dn}

with the same shape such that, as n → ∞, C1n ≤ |Dn| ≤ C2n, and C1
√

n ≤ |∂Dn| ≤ C2
√

n,

for some C1, C2 > 0. Here, |Dn| and |∂Dn| are the area and perimeter of Dn.

Assumption 2. Assume X(sss, t) is strictly stationary in sss and, for some ν > 4, sup
t∈T

E|X(sss, t)|ν <

∞ and sup
t∈T

E|U(t)|ν < ∞.

Assumption 3. The α-mixing coefficient (2.22) is well defined for X(sss, t), and there exist con-

stants δ1 > 2ν/(ν− 4) and C > 0 such that αX(h) ≤ Ch−δ1 for all h ≥ 0 (Guyon, 1995).

Assumption 4. Suppose Ns(dsss) is also α-mixing with the coefficient, denoted as αN (h), simi-

larly defined as (2.22), and assume αN (h) ≤ C exp(−δ2h) for some C > 0 and δ2 > 0. There

exist constants C1, C2 > 0 such that, for k = 1, 2, 3, 4, C1 ≤ λs,k(sss1, . . . , sssk) ≤ C2 for all

sss1, sss2, sss3, sss4 ∈ Dn.

Assumption 5. Let Mn be a sequence of positive constants depending on n, such that there exist

some C1, C2 > 0 such that C1Mk
n ≤ λt,k(t1, . . . , tk) ≤ C2Mk

n for all t1, t2 ∈ T and k = 1, 2.

Assumption 6. As n→ ∞, both Ks and Kt → ∞, and KsK2
t = o

{
n/log2(n)

}
.

Assumption 7. Restricting R(·, ·, ·) on the compact 3-dimensional domain H = [0, ∆]× T× T,

for order r = (r1, r2, r3) and a > 0, define the Hölder class of functions on H as Cr,a
3 (H) := { f :

sup
x1x2∈H

| f (`1,`2,`3)(x1) − f (`1,`2,`3)(x2)|/‖x1 − x2‖a < ∞, 0 ≤ `i ≤ ri, i = 1, 2, 3}. Assume
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that R ∈ Cp,a
3 , where p = (ps, pt, pt) is the order of the 3-dimensional tensor product spline

function and a > 0.

Assumption 8. Define a class of bivariate Hölder continuous functions on T2 as Cr,a
2 (T2) :=

{ f : sup
x1x2∈T2

| f (`1,`2)(x1)− f (`1,`2)(x2)|/‖x1 − x2‖a < ∞, r = (r1, r2), 0 ≤ `1 ≤ r1, 0 ≤ `2 ≤

r2}. Assume that Γ(·, ·) and Λ(·, ·) ∈ C(pt,pt),a
2

(
T2), where a > 0.

Assumption 1 describes a typical increasing domain asymptotic framework (Guan

et al., 2004; Li and Guan, 2014). A rectangular or circular spatial domain Dn with the

same shape but increasing area would satisfy Assumption 1. Assumptions 2 is a standard

assumptions on moments of the response variable (Li and Hsing, 2010). Assumption 3 al-

lows the spatial dependency in X(sss, t) decay in a slow polynomial rate. In Assumption 4,

we assume that the sampling spatial point process is also weakly dependent and there is

a positive chance to sample any four points inDn. A homogenous Poisson process would

satisfy Assumption 4. It is worth pointing out that the expected number of repeated mea-

sures on Y(sssi, ·) is
∫

T λt,1(t)dt � Mn under Assumption 5; when Mn are bounded by a

constant, the data are spatially correlated sparse functional data; on the other hand, if

Mn → ∞ fast enough as a function of n, the data are dense functional data. In all of our

theoretical results below, we allow Mn to be of any rate relative to n, thus admit all types

of functional data in a unified framework. Assumption 6 is a standard assumption on the

number of knots and sets a range for the tuning parameters. Assumptions 7 and 8 govern

the smoothness of the functions that we estimate.

The following theorem provides the asymptotic convergence rate for the tensor-product

spline estimator of the spatio-temporal covariance function.

Theorem 2.4.1. Under the model framework described in Section 2.2 and Assumptions 1 – 7,

∥∥∥R̂− R
∥∥∥

L2
= Op

√ Ks

|Dn|
+

√
KsKt

|Dn|Mn
+

√
KsK2

t
|Dn|M2

n
+ K−ps

s + K−pt
t

 . (2.23)
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Remark. For sparse functional data where Mn is a bounded constant, assume Ks = Kt ≡ K and

ps = pt ≡ p for simplicity, then the result in Theorem 2.4.1 can be simplified to ‖R̂− R‖L2 =

Op(K3/2|Dn|−1/2 + K−p). Since |Dn| � E(N) is proportional to the sample size (i.e. the

number of functions) under Assumption 4, such a rate is the classic convergence rate for a 3-

dimensional nonparametric regression using splines (Stone, 1994). For dense functional data with

Mn & n1/(2pt), choose Kt � Mn and we have ‖R̂− R‖L2 = Op(K1/2
s |Dn|−1/2 + K−ps

s ), which

is the convergence rate for 1-dimensional nonparametric estimation of the spatial covariance Li

et al. (2007). This result suggests Mn � n1/(2pt) is a transition point (Li and Hsing, 2010; Zhang

and Wang, 2016; Wang et al., 2018), and further increasing the number of repeated measures on

each curve would not improve the convergence rate of R̂.

The bivariate function Ω(·, ·) in (2.12) is of fundamental importance to our FPCA

methodology, where we borrow spatial information up to a distance ∆ > 0. The fol-

lowing theorem provides the convergence rate of Ω̂.

Theorem 2.4.2. Under the assumptions in Theorem 2.4.1 and the coregionalization structure in

(2.4), ∥∥∥Ω̂−Ω
∥∥∥

L2
= Op

√ 1
|Dn|

+

√
K2

t
|Dn|M2

n
+ K−ps

s + K−pt
t

 . (2.24)

Remark. By integrating over the spatial dimension of R̂, we apply another step of smoothing and

therefore obtain a faster convergence rate for Ω̂ than R̂. By undersmoothing in the spatial direction

letting Ks & n1/(2ps), the Op(K
−ps
s ) nuisance of estimating spatial covariance becomes negligible,

then the rate in Theorem 2.4.2 is comparable to the classic covariance estimation convergence rate

(Li and Hsing, 2010) for independent functional data using kernel smoothing. The convergence

rate above becomes a typical bivariate spline smoothing rate Op(Kt/|Dn|1/2 + K−pt
t ) when the

data are sparse; and the root-n convergence rate, ‖Ω̂−Ω‖L2 = Op(|Dn|−1/2), is obtainable, if

the data are dense enough with Mn & n1/(2pt) and if we choose Kt � Mn.
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The convergence rate for ψ̂j(t) is a direct result from the perturbation theory in Hall

and Hosseini-Nasab (2006) and is provided in the following theorem.

Theorem 2.4.3. Under the assumptions in Theorem 2.4.2 and suppose all eigenvalues of Ω(·, ·)

are distinct, ∥∥ψ̂j − ψj
∥∥

L2 = Op

(√
1
|Dn|

+

√
Kt

|Dn|Mn
+ K−ps

s + K−pt
t

)
, (2.25)

for j = 1, 2, . . . , J up to any fixed order J.

Remark. Results in Theorem 2.4.3 are comparable to those in Hall et al. (2006) and Li and Hsing

(2010) for independent functional data. For sparse functional data where Mn is bounded by a

constant, by adopting an undersmoothing strategy in the spatial direction (i.e. Ks & n1/(2ps)), we

get ‖ψ̂j − ψj‖L2 = Op{(Kt/|Dn|)1/2 + K−pt
t }. This is a 1-dim spline smoothing convergence

rate, even though ψ̂j(t) is a byproduct of a 2-dim nonparametric estimator Ω̂(·, ·) that converges

in a slower 2-dim rate. For dense functional data (Mn & n1/(2pt)), by choosing Kt � Mn, we get

‖ψ̂j − ψj‖L2 = Op(|Dn|−1/2), which is a root-n rate.

Restricting Cj(u) and Ĉj on [0, ∆], the following theorem provides convergence rates

for the estimated spatial covariance functions.

Theorem 2.4.4. Under the assumptions of Theorem 2.4.3,∥∥∥Ĉj − Cj

∥∥∥
L2

= Op

(√
Ks

|Dn|
+

√
Kt

|Dn|Mn
+ K−ps

s + K−pt
t

)
, (2.26)

for j = 1, 2, . . . , J up to any fixed order J.

Remark. Suppose the covariance function R is smoother in the temporal directions than the spa-

tial direction, i.e. pt ≥ ps, by choosing Kps/pt
s . Kt . Ks, the convergence rate in Theorem 2.4.4

becomes Op

(√
Ks
|Dn| + K−ps

s

)
, which is comparable to the results in Li et al. (2007) developed

for 1-dimensional spatial domain, multivariate response and under a rather stringent separable

covariance assumption.
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With the additional smoothness conditions in Assumption 8, we have the following

results on the covariance estimator Λ̂ for the functional nugget effect and the variance

estimator σ̂2
ε for the measurement errors.

Theorem 2.4.5. Under Assumptions 1 – 8 and further assume KΓ � Kt and pΓ = pt,

∥∥∥Λ̂−Λ
∥∥∥

L2
= Op

√ Ks

|Dn|
+

√
KsKt

|Dn|Mn
+

√
KsK2

t
|Dn|M2

n
+ K−ps

s + K−pt
t

 . (2.27)

Theorem 2.4.6. Under Assumptions 1 – 8 and further assume KΓ � Kε � Kt and pΓ = pε = pt,

σ̂2
ε − σ2

ε = Op

(√
1
|Dn|

+

√
Kt

|Dn|Mn
+ K−pt

t

)
. (2.28)

Remark. As shown in Section 2.10.3.5 of the Supplementary Material, the bivariate spline es-

timator Γ̂ in (2.18) converges in a faster rate of Op{|Dn|−1/2 +Kt(|Dn|M2
n)
−1/2 + K−pt

t }, and

the rate in Theorem 2.4.5 is dominated by the slower convergence rate of the 3-dim covariance

estimator R̂(0, t1, t2). The convergence rate of σ̂2
ε in Theorem 2.4.6 is comparable to Theorem 3.4

of Li and Hsing (2010) for independent functional data.

2.5 Implementation

We now address some of the implementation issues for our methods, including pos-

itive semidefinite adjustment for the spatial covariance function estimators, tuning pa-

rameter selection for spline smoothing, and mean function estimation.

2.5.1 Positive semidefinite adjustment for the spatial covariance functions

The spatial covariance functions
{
Cj(u) : j = 1, · · · , J

}
are required by definition to

be positive semidefinite in R2, meaning
∫ ∫
Cj(‖sss1 − sss2‖)a(sss1)a(sss2)dsss1dsss2 ≥ 0, for any

integrable functions a(·) defined on R2. The spline estimators Ĉj(u) defined in (2.16),
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even though consistent, are not guaranteed to be positive semidefinite. This violation,

however, can be easily corrected using a correction procedure similar to those used in

(Hall et al., 1994; Li et al., 2007).

By Bochner’s theorem (Schabenberger and Gotway, 2017, p. 141), Cj(u) is positive

semidefinite if C+j (θ) ≥ 0 for all θ, where C+j (θ) =
∫ ∞

0 Cj(u)J0(θu)udu is the Hankel

transformation of Cj(·) and J0(·) is the Bessel function of the first kind with order 0. This

motivates us to take a nonnegative truncation on the Hankel transformation of Ĉj(·), i.e.,

Ĉ+j (θ) = max
{∫ ∞

0 Ĉj(u)J0(θu)udu, 0
}

. In practice, Cj(u) decays to zero beyond the range

of spatial dependence and Ĉj(u) is unstable for a large u. We therefore multiply Ĉj by a

weight function w(u) ≤ 1 when taking the Hankel transformation,

Ĉ+j (θ) = max
{∫ ∞

0
Ĉj(u)J0(θu)w(u)udu, 0

}
. (2.29)

In Hall et al. (1994), some possible choices of w(·) are suggested, such as w1(u) = I(|u| ≤

D) for a threshold D > 0, and w2(u) = 1 if |u| < D1, (D2 − |u|)/(D2 − D1) for D1 ≤

|u| ≤ D2 and 0 if |u| > D2. Then the adjusted covariance estimators are the inverse

Hankel transformations C̃j(u) =
∫ ∞

0 Ĉ
+
j (θ)J0(θu)θdθ. And the correlation functions are

adjusted as ρ̃j(u) = C̃j(u)/C̃j(0) and an adjusted estimator for the spatio-temporal covari-

ance function R(·, ·, ·) can be constructed as R̃(u, t1, t2) = ∑J
j=1 C̃j(u)ψ̂j(t1)ψ̂j(t2), where J

is a large enough number such that the first J FPC’s capture most of the total variation.

2.5.2 Choosing the number of B-spline knots

The amount of smoothing in our spline covariance estimator R̂ is governed by the

numbers of knots Ks and Kt. Following Huang and Yang (2004), we choose these tun-

ing parameters by minimizing the Bayesian Information Criterion (BIC): BIC(Ks, Kt) =

Ñ log{L(β̂ββ)}+ d f × log(Ñ), where L(·) is the square loss function defined in (2.10), the

degree of freedom d f = (Ks + ps)(Kt + pt)2 is the total number of tensor product B-spline
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basis functions, and Ñ =
∫
Dn

∫
Dn

∫
T

∫
T I(‖sss1− sss2‖ ≤ ∆)Nt(dt1|sss1)Nt(dt2|sss2)Ns,2(dsss1, dsss2)

is the total sample size for estimating R(·, ·, ·). Similar BIC criteria are used to choose the

number of knots in Γ̂(·, ·) and σ̂2
Y(·).

2.5.3 Estimation of the mean function

Up to this point, we assume µ(t) ≡ 0. In practice, we first estimate µ(t) by

µ̂(·) = argmin
g(·)∈S pm

Km [0,1]

∫
Dn

∫
T
{Y(sss, t)− g(t)}2Nt(dt|sss)Ns(dsss), (2.30)

where S pm
Km

[0, 1] is a spline space with order pm and Km interior knots, and then pro-

ceed with the methods described in Section 2.3 using the centered response Ỹ(sssi, tij) =

Y(sssi, tij) − µ̂(tij). For fully observed functional data with simple parametric spatial co-

variance and no measurement error, Kokoszka and Reimherr (2017) proposed a method

to improve estimation efficiency for the mean function taking into account the spatial

dependence. However, it is not yet clear how to extend this method to the discretely ob-

served functional data with non-separable covariance structures in our study, especially

with the complication of functional nugget effect and measurement error.

2.6 Kriging of spatially dependent functional data

Spatial prediction or kriging is a major interest in spatial statistics (Stein, 2012) and

there has been some recent work on kriging for spatially dependent functional data. For

example, the FPCA-then-kriging two-step procedure (Nerini et al., 2010; Menafoglio et al.,

2016) is to first perform the classic FPCA (Yao et al., 2005; Li and Hsing, 2010) ignoring any

spatial dependence and then perform co-kriging on the estimated FPC scores by fitting

parametric spatial covariance models such as those in the Matérn family.



28

There are several issues in existing methods: first, the existing methods do not con-

sider functional nugget effect and may suffer from large estimation biases; second, in the

two-step procedure, the estimated FPC scores are contaminated with estimation errors,

which bring a lot of nuisance into spatial covariance estimation; third, the spatial covari-

ance models are limited to a few parametric families which could be mis-specified.

We now propose a new functional kriging method under our model. Let sss0 ∈ Dn be

a new location where no data are observed, and our goal is to predict the unobserved

functional data X(sss0, t) by borrowing information from neighboring locations. Under

our framework, X(sss0, t) = µ(t) + ∑∞
j=1 ξ j(sss0)ψj(t). In practice, the infinite principal com-

ponent expansion of X(sss0, t) needs to be truncated at a finite order J, which can be de-

termined by a simple “percentage of variation explained” method (Yao et al., 2005). We

then predict X(sss0, t) by X̂(sss0, t) = µ̂(t) + ∑J
j=1 ξ̂ j(sss0)ψ̂j(t), where ξ̂ j(sss0) is the Best Linear

Unbiased Predictor (BLUP) of ξ j(sss0) using data collected from locations close to sss0.

Let N (sss0, ∆) be the collection of sampled locations within a distance ∆ from sss0, and

YYYsss0,∆ = {Y(sssi, tij), sssi ∈ N (sss0, ∆)}T be the vector of observed data from the neighboring

locations. Similarly, let XXXsss0,∆ = {X(sssi, tij), sssi ∈ N (sss0, ∆)}T and UUUsss0,∆ = {Ui(tij), sssi ∈

N (sss0, ∆)}T be the latent random vectors in YYYsss0,∆. Suppose Rsss0,∆ = Cov(XXXsss0,∆) is the

covariance matrix interpolated from the spatio-temporal covariance function R(·, ·, ·),

ΛΛΛsss0,∆ = Cov(UUUsss0,∆) is a block diagonal matrix representing the covariance of the func-

tional nugget effect, then ΣΣΣsss0,∆ = Cov(YYYsss0,∆) = Rsss0,∆ + ΛΛΛsss0,∆ + σ2
ε III is the covariance

matrix of the observed data within the neighborhood N (sss0, ∆). We define that ΥΥΥsss0,j =

Cov{ξ j(sss0),YYYsss0,∆} = {Cj(‖sssi − sss0‖)ψj(ti`), sssi ∈ N (sss0, ∆)}T, then the BLUP for ξ j(sss0) is

ξ̂ j(sss0) = ΥΥΥT
sss0,jΣΣΣ

−1
sss0,∆(YYYsss0,∆ −µµµsss0,∆), (2.31)

where µµµsss0,∆ = E(YYYsss0,∆) is the mean vector interpolated from the mean function µ(t). The

BLUP in (2.31) depends on unknown functions such as R(·, ·, ·), Λ(·, ·), Cj(·), ψj(·) and
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µ(·), which we replace with the nonparametric estimators proposed in Section 2.3 and

Section 2.5.

2.7 Simulation studies

We now illustrate the proposed methodology using simulation studies. Data are gen-

erated from model (2.1) in the spatial domain D = [0, 10]2 and time domain T = [0, 1],

with X(sss, t) = µ(t) + ∑3
j=1 ξ j(sss)ψj(t), µ(t) = 2t sin(2πt), ψ1(t) =

√
2 cos(2πt), ψ2(t) =

√
2 sin(2πt) and ψ3(t) =

√
2 cos(4πt). The principal component scores, ξ j(sss), j = 1, 2, 3,

are Gaussian random fields generated using the RandomFields package in R. The variances

of ξ j’s are (v1, v2, v3) = (3, 2, 1). Their spatial covariance functions are members of the

Matérn family, Cj(u; ν, ρ) = vj
21−ν

Γ(ν) (
√

2νu/ρ)νKν(
√

2νu/ρ), where Kν(·) is the modified

Bessel function of the second kind with degree ν. We set the shape parameter ν to be 5.5,

3.5 and 1.5 and range parameter ρ to be 1, 0.5 and 0.5 respectively for the three principal

components. The spatial locations {sssi} are sampled from a homogeneous spatial Poisson

process over D, with the first-order intensity λsss ≡ 10; time of repeated measures on each

function are sampled from a Poisson process over T with λt = 10. The measurement

errors εij are generated as iid Normal(0, σ2
ε ), where σ2

ε = 0.25. We consider two scenarios

for the functional nugget effect Ui(t).

• Scenario A: Ui(t) = ∑2
j=1 ξnug,j(sssi)ψnug,j(t), where ψnug,1(t) and ψnug,2(t) are the first

two basis functions in the normalized Fourier-Bessel Series, ξnug,j ∼ Normal(0, ωnug,j),

j = 1, 2, and (ωnug,1, ωnug,2) = (2, 1).

• Scenario B: no functional nugget effect, i.e. Y(sssi, tij) = X(sssi, tij) + εij.

We simulate 200 datasets for each scenario and apply the proposed estimation pro-

cedure (denoted as sFPCA) to each simulated dataset. We use tensor product of cubic
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Figure 2.3: Estimation results of sFPCA under Scenario A. Panels (a) - (h) contain sum-
maries of the functional estimators, as described in the labels. In each panel, the solid
line is the true function; the dashed line is the mean of the functional estimator; and the
shaded area illustrates the bands of pointwise 5% and 95% percentiles. Panel (i) contains
the boxplots of v̂1, v̂2, v̂3, ω̂nug,1, and ω̂nug,2.
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B-splines to estimate the spatial-temporal covariance function. The tuning parameters

are selected using the BIC described in Section 2.5 on some pilot datasets, then held fixed

for massive simulations. For comparison, we also apply the classic FPCA method Yao

et al. (2005); Li and Hsing (2010) for independent functional data (denoted as iFPCA) to

the simulated datasets. For fair comparison, iFPCA is implemented using the R package

fdapace, which has built-in tuning parameter selection. Compared with our methods, iF-

PCA only estimates a bivariate temporal covariance function using observations at the

same location sss, does not distinguish the functional nugget effect and does not borrow

spatial information like what we do through integration in (2.12). There is no funda-

mental difference between our method and the iFPCA in terms of mean estimation, we

therefore relegate estimation results for µ(t) to Figure 2.8 in the Supplementary Material

and focus on the results of covariance estimation and principal component analysis.

In Panels (a) - (f) of Figure 2.3, we summarize the estimation results of sFPCA under

Scenario A for ψj(·) and Cj(·), j = 1, 2, 3. In each plot, we compare the mean of our

estimator with the true function and provide confidence bands formed by pointwise 5%

and 95% percentiles of the estimator. By taking a spectral decomposition of Λ̂ in (2.19), we

also get estimators of ψnug,j(t) and ωnug,j. Graphical summaries of ψ̂nug,j(t), j = 1, 2, are

provided in Panels (g) and (h) of Figure 2.3; boxplots of scalar estimators v̂j and ω̂nugg,j

are provided in Panel (i). As we can see, the sFPCA estimators behave reasonably well: all

functional estimators exhibit very little bias and the confidence bands are relatively tight

around the true functions. The only functional estimator shows considerable variation is

ψ̂nugg,2, which is partially due to the fact that the convergence rate of Γ̂ in Theorem 2.4.5

is much slower compared with that of Ω̂ in Theorem 2.4.2.

The iFPCA method does not produce estimates for the spatial covariance functions nor

the eigenfunctions of the functional nugget effect, we therefore only provide graphical

summaries of the estimated eigenfunctions for iFPCA under Scenario A in Figure 2.4. As
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we can see, these functional estimators suffer from significant biases and large variation.

The large biases can be explained by fact that iFPCA does not distinguish the functional

nugget effect from signals in the spatially dependent functional effect; the large varia-

tions, on the other hand, are due to large noise, strong spatial dependence, and the fact

that iFPCA does not borrow spatial information like we do through integration in (2.12).
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Figure 2.4: Estimation results of iFPCA under Scenario A. In each panel, the solid line is
the true function; the dashed line is the mean of the functional estimator; and the shaded
area illustrates the bands of pointwise 5% and 95% percentiles.

Graphical summaries under Scenario B are relegated to the Supplementary Material.

See Figure 2.10 for summaries for sFPCA and Figure 2.10 for iFPCA. Scenario B is remov-

ing the functional nugget effect Ui(t) from Scenario A, the estimated eigenfunctions of

iFPCA behave much better compared with Scenario A due to smaller noises, although

iFPCA does not directly produce estimates for the spatial covariance functions as we do.

We also summarize, in Table 2.1, the mean and standard deviation of integrated square

error (ISE) for the functional estimators of sFPCA and iFPCA. These numerical summaries

confirm our observations from the graphs that the sFPCA estimators behave overwhelm-

ingly better than those of iFPCA under Scenario A, due to the existence of functional

nugget effect. All estimators behave better under Scenario B due to smaller noises. How-

ever, even under Scenario B without functional nugget effects, sFPCA estimators of the
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eigenfunctions are still better than iFPCA because we borrow spatial information by in-

cluding pairs of data in neighboring locations.

Table 2.1: Simulation results on the mean and standard deviation of integrated square
errors for functional principal components estimated by sFPCA and iFPCA.

Simulation Scenario FPC sFPCA iFPCA

Scenario A

ψ1 0.076(0.104) 0.411(0.376)
ψ2 0.104(0.119) 0.367(0.369)
ψ3 0.077(0.071) 1.494(0.311)

ψnug,1 0.035(0.031) –
ψnug,2 0.368(0.515) –

Scenario B
ψ1 0.073(0.114) 0.134(0.232)
ψ2 0.092(0.113) 0.123(0.232)
ψ3 0.061(0.043) 0.059(0.025)

Table 2.2: Kriging results in the simulation study: mean and standard deviation of inte-
grated squared errors for sFPCA and iFPCA+CoKriging.

Simulation Scenario sFPCA iFPCA+CoKriging
Scenario A 2.123(0.589) 5.147(0.989)
Scenario B 1.563(0.704) 4.602(1.335)

To illustrate the proposed sFPCA kriging method in Section 2.6, we randomly sample

new data from 100 new locations in each simulated dataset, and use the training data and

the estimated covariance structure to predict X(sss, t) at the new locations. The integrated

square error (ISE),
∫
{X̂(sss, t) − X(sss, t)}2dt, is averaged over all new locations and then

repeated for each dataset. For comparison, we also apply the iFPCA+CoKriging two step

procedure, implemented in R package fdagstat, to each dataset: the number of principal

components for iFPCA is selected to explain 99% of the variation; the spatial covariance

functions are estimated using the Matérn model based on the estimated iFPCA scores. The
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kriging results are summarized in Table 2.2, where we provide the mean and standard

deviation of ISE for both methods and both scenarios. As we can see, our kriging method

yields much smaller prediction error than the two step procedure under both scenarios.

2.8 Data analysis

We now analyze the two motivating datasets described in Section 2.1, using the pro-

posed methodology.

2.8.1 Analysis of the London housing price data

The dataset consists of 10, 980 transaction records of house. Figure 2.12 in the Sup-

plemental Material shows the empirical distributions for the number of transactions per

house and the transaction dates. The estimated mean function, shown in Figure 2.1,

demonstrates an overall increasing trend. Remarkably, the two dips on the mean curve

reflect the impacts of the 2008 financial crisis and the 2016 Brexit.

A pilot study implies that the range of spatial dependency is about 5.5 kilometers. We

therefore estimate the spatio-temporal covariance function R(·, ·, ·) up to a spatial lag of

∆ = 5.5 km, using tensor product of cubic B-splines with Ks = 6 and Kt = 6 interior knots

in spatial and temporal directions chosen by the BIC in Section 2.5.2. In Figure 2.11 we

show contour plots of R̂(u, ·, ·) standardized by ‖R̂(u, ·, ·)‖1 =
∫
|R̂(u, t1, t2)|dt1dt2/|T|2,

at u = 0, 1, 2, 3, and 4. The differences in these contour plots also show some evidence

that the covariance structure is non-separable.

Next, we perform FPCA to the data by a spectral decomposition of Ω̂, which is cal-

culated by (2.12) using W(u) = I (u ∈ [0, ∆]). The first two eigenvalues, ω̂1 = 285.80

and ω̂2 = 21.52, in total explain 99.42% of variation in Ω̂. A contour plot of Ω̂(·, ·) and

the first two estimated eigenfunctions are shown in Figure 2.5 (a) and (c). The estimated
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Figure 2.5: Results on the London housing price data: (a) the contour plot of Ω̂(t1, t2); (b)
the contour plot of Λ̂(t1, t2), covariance function of the functional nugget effect; (c) the
first two eigenfunctions of Ω̂(·, ·); (d) the first three eigenfunctions of Λ̂(·, ·); (e) the esti-
mated spatial correlation function ρ̂1(·) and its positive semi-definite adjustment ρ̃1(·); (f)
the estimated spatial correlation function ρ̂2(·) and its positive semi-definite adjustment
ρ̃2(·).

spatial correlation functions and their positive semi-definite adjustments are shown in

Figure 2.5 (e) and (f). Both spatial correlation functions decrease rapidly at different de-

cay rates as the distance gets larger. We also estimate the covariance function Λ(·, ·) of

the functional nugget effect and the nugget principal components, the results of which are

shown in Figure 2.5 (b) and (d). The noise-to-signal ratio of the functional nugget effect is

‖Λ̂(·, ·)‖L2
/
‖R̂(0, ·, ·)‖L2 = 0.805%. The first three eigenvalues explain 98.77% of the total

variation in the functional nugget effect. These results show that, for the London hous-

ing market, the house-specific effect is more important than the spatial dependent effect.
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These house specific effects might be explained by factors such as size, year built, num-

ber of bedrooms, number of bathrooms, etc. The variables are not included in the public

records, hence not included in our current analysis. It would be interesting to include

these covariates in our future analysis.
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Figure 2.6: Sensitivity Analysis on the London housing price data. The red lines are the
estimated first two eigenfunctions of Ω(·, ·) by using the whole dataset, while the green
dashed lines and blue dotted lines are the estimated first two eigenfunctions of Ω(·, ·) by
using the data of homes on the northern and southern sides of River Thames.

Finally, we perform a sensitivity analysis to verify the assumption of spatial stationar-

ity. We divide the data into two subsets: houses to the north of River Thames and those to

the south. We analyze the two subsets separately using the same tuning parameters as for

the whole data, and the estimated eigenfunctions from the subsets are shown in Figure

2.6. As we can see, the subset eigenfunctions are similar to each other and to the whole

data estimates, which shows that there is no clear violation of our model assumptions.
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2.8.2 Analysis of the Zillow real estate data

The spatial locations in this dataset are sampled from six regions in the Bay Area:

Fremont, Oakland, Palo Alto, San Francisco, San Jose, and San Mateo. The estimated region-

specific mean functions are presented in Figure 2.13 of the Supplementary Material. To

get rid of the regional effects, we center the trajectories in Figure 2.2 by subtracting their

region-specific mean functions, and the residual trajectories are presented in Figure 2.14.

Our methodology is based on the spatially stationary assumption, but can be easily ex-

tended to piecewise-stationary settings, we therefore apply the proposed methodology to

the residual trajectories.

A pilot study indicates that the spatial correlation diminishes at a distance of about 3

kilometers, also see the estimated spatial correlation function in Figure 2.7. We therefore

estimate the spatio-temporal covariance function R(·, ·, ·) up to a spatial lag of ∆ = 3.5

(kilometers). We use tensor product of cubic B-splines, i.e. ps = pt = 4, with Ks = 5

and Kt = 6 interior knots in spatial and temporal directions, which are chosen by the

BIC in Section 2.5.2. In Figure 2.15 we show contour plots of R̂(u, ·, ·) standardized by

‖R̂(u, ·, ·)‖1 =
∫
|R̂(u, t1, t2)|dt1dt2/|T|2, at u = 0, 1, 2, and 3. The differences in these

contour plots also show some evidence that the covariance structure is non-separable.

Next, we perform FPCA to the data by a spectral decomposition of Ω̂, which is cal-

culated by (2.12) using W(u) = I (u ∈ [0, ∆]). The first two eigenvalues, ω̂1 = 974.22

and ω̂2 = 18.59, in total explain 97.97% of variation in Ω̂. A contour plot of Ω̂(·, ·) and

the first two estimated eigenfunctions are shown in the upper panels of Figure 2.7. No-

tice that ψ̂1(t), given by the solid curve in Figure 2.7 (b), is almost constant over time,

which implies that the first FPC is a spatial random intercept – locations with high scores

ξ1(sss) on the first FPC has higher than average price-to-rent ratio. On the other hand,

ψ̂2(t) represents a decreasing trend in time. Since the overall trend of price-to-rent ratio is
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Figure 2.7: Results on the Zillow price-to-rent ratio data: (a) contour plot of Ω̂(t1, t2);
(b) the first two eigenfunctions (c) the estimated spatial correlation function ρ̂1(·) and its
positive semi-definite adjustment ρ̃1(·); (d) ρ̂2(·) and ρ̃2(·).

increasing in Figure 2.2 (b), locations with high values of ξ2(sss) has slower than average in-

crease of price-to-rent ratio. The estimated spatial correlation functions and their positive

semi-definite adjustments are shown in the lower panels of Figure 2.7. We also estimate

the covariance function Λ(·, ·) of the functional nugget effect and the nugget principal

components, the results of which are shown in Figure 2.16. The first three eigenvalues,

ω̂nug,1 = 49.95, ω̂nug,2 = 9.64, and ω̂nug,3 = 4.22, explain 91.74% of the total variation in

the functional nugget effect. The estimated variance of measurement errors is σ̂2
ε = 0.246.
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Finally, we illustrate the performance of the proposed sFPCA kriging method by a

leave-one-curve-out kriging experiment: leave one curve out as test data, use the rest of

the data and the fitted model to predict the curve on the left out location, calculate the

integrated squared error (ISE) for the prediction, and repeat this experiment for all loca-

tions. For comparison, we also do the same kriging experiment for the iFPCA+Co-kriging

method, where the functional principal components are estimated using the fdapace pack-

age, the number of FPC’s is decided by 99% of total variation explained, spatial covariance

estimation and co-kriging are performed using the fdagstat package by fitting Matérn co-

variance models to the FPC scores. After scaling the time domain to [0, 1], the median

prediction ISE is 1.85 for sFPCA kriging and 3.61 for iFPCA+Co-kriging, which confirms

that our proposed kriging method has much smaller prediction error than the two-step

procedure.

2.9 Discussion

We propose a three dimension tensor product spline approach to estimate the spatio-

temporal covariance function of spatially dependent functional data. Based on a core-

gionalization structural assumption, which is more flexible than the commonly used sep-

arable structure assumed in the literature Li et al. (2007), our 3-dim spline covariance

estimator yields important byproducts, including nonparametric estimators of the princi-

pal components and the spatial covariance functions for the FPC scores. We also stress the

importance of modeling the functional nugget effects, which model the local characteris-

tics that are not dependent to the neighbors. We show in our simulation studies, ignoring

the functional nugget effects can potentially cause large biases in the FPCA estimators.

Our methods can be naturally used in functional kriging. Our simulation studies show

that our kriging approach is superior to the iFPCA + Co-kriging two-step procedure, which
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suffers from nuisance caused by FPCA estimation errors infested into spatial covariance

estimation. We also derive the asymptotic convergence rates for the proposed estimators

under a unified framework that can accommodate both sparse and dense functional data.

Our approach is based on moderate model assumptions, such as spatial stationarity.

As we demonstrate in our real data analysis, the stationarity assumption can be easily re-

laxed to piecewise stationarity. Our methods also open up many new research questions,

related to model selection and statistical inference for the proposed model. For instance,

one important research question is how to select the number of principal components in

the model. Aikaike information criterion such as that studied in Li et al. (2013) depends

on evaluating the likelihood, which is difficult for spatially dependent functional data. It

might also be possible to relax the isotropic assumption in our approach to a more flexible

geometric anisotropy setting. All these questions and extensions call for future research.

2.10 Supplemental Material

This supplementary section consists of the technical proofs to the theoretical results

in the main part and additional supporting graphs for the simulation study and the real

data analysis. It is organized as follows. We introduce some notation in Section 2.10.1,

present technical lemmas and their proofs in Section 2.10.2, prove the main theorems

in Section 2.10.3, and provide additional figures in Sections 2.10.4 and 2.10.6 to further

support our numerical studies in Sections 2.7 and 2.8.
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2.10.1 Notations

• We use C (or any C with a subscript) to denote a generic positive constant.

• Cumbersome notation on B-spline functions, such as Bpt
j,Kt

(t) and Bps
j,Ks

(u) used in Section 3.1,

are simplified as Bj(t) and Bj(u) for ease of exposition in our proofs, as long as no confusion

is raised.

• For any vector a = (a1, . . . , ap) ∈ Rp, denote vector norms ‖a‖r = (|a1|r + · · ·+ |an|r)1/r,

1 ≤ r < +∞, and ‖a‖max = max(|a1|, . . . , |an|).

• For any q× p matrix A = (aij)q×p, denote ‖A‖r = max
a∈Rp,a 6=0

‖Aa‖r‖a‖−1
r , for 1 ≤ r < +∞,

‖A‖∞ = max
1≤i≤q

∑
p
j=1 |aij|, and ‖A‖max = max

1≤i≤q,1≤j≤p
|aij|.

• Denote the distance between two locations as uij = ‖si − sj‖, the perimeter of the spatial

domain Dn as dn := max
sss1,sss2∈Dn

‖sss1 − sss2‖2, and a disc of radius h centered at the origin as Dh :=

{x ∈ R2 : ‖x‖2 ≤ h}.

• Let G := {(sssi, tij)|i = 1, . . . , N, j = 1, . . . , Mi} be the collection of all locations and times,

which is a realization of the point process N (·, ·), and let YYY := {Y(sss, t)|(sss, t) ∈ G} be the set

of all observations. Additionally, define D⊗k
n = Dn × · · · × Dn︸ ︷︷ ︸

k

and T⊗k = T × · · · × T︸ ︷︷ ︸
k

, for

k = 1, 2, 3, 4.

• The tensor product spline coefficient in (2.10) is the vectorization of a three dimensional

array, with dimensions (Ks + ps)× (Kt + pt)× (Kt + pt). For convenience, we use an index

vector to denote the location of an entry in the 3-dim array and the corresponding location

in the vectorization. For two index vectors ` = (`1, `2, `3) and `′ = (`′1, `′2, `′3), where `1, `′1 ∈

{1, . . . , Ks + ps} and `2, `′2, `3, `′3 ∈ {1, . . . , Kt + pt}, let a` represent the {(Kt + pt)2(`1− 1) +

(Kt + pt)(`2− 1) + `3}th element of the vector a ∈ R(Ks+ps)(Kt+pt)2
, and let a`,`′ represent the

element on the {(Kt + pt)2(`1 − 1) + (Kt + pt)(`2 − 1) + `3}th row and the {(Kt + pt)2(`′1 −

1) + (Kt + pt)(`′2 − 1) + `′3}th column of the matrix AAA ∈ R{(Ks+ps)(Kt+pt)2}×{(Ks+ps)(Kt+pt)2}.
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2.10.2 Technical Lemmas

Lemma 1. Under Assumption 7, there exists an R∗ ∈ S[3], the three-dimensional tensor product

spline space defined in the Section 2.3.1, such that ‖R− R∗‖∞ = O(K−ps
s + K−pt

t ) as Ks, Kt →

∞, where ‖ f ‖∞ = sup(u,t1,t2)∈H | f (u, t1, t2)|.

Proof of Lemma 1: Lemma 1 follows from Theorem 12.7 of (Schumaker, 1981, p.491). �

Lemma 2. Let {bj1 j2 j3 : j1 = 1, . . . , Ks + ps; j2, j3 = 1, . . . , Kt + pt} be a 3-dim array of

spline coefficients, and b be its vectorization so that BBBT
[3](u, t1, t2) · b = ∑

Ks+ps
j1=1 ∑

Kt+pt
j2=1 ∑

Kt+pt
j3=1

bj1 j2 j3 Bj1 j2 j3(u, t1, t2). There exist constants C1, C2, C3, C4, and C5, such that,

C1‖b‖2
2

KsK2
t
≤
∫
[0,∆]×T×T

{BBBT
[3](u, t1, t2) · b}2dudt1dt2 ≤

C2‖b‖2
2

KsK2
t

, (2.32)

∫
T⊗2

{∫ ∆

0
BBBT
[3](u, t1, t2)du · b

}2

dt1dt2 ≤
C3

K2
t

∑
j2,j3

(
∑
j1

bj1 j2 j3 ·
∫ ∆

0
Bj1(u)du

)2

, (2.33)

∫
T

{∫ ∆

0

∫
T

BBBT
[3](u, t1, t2)dt1du · b

}2

dt2 ≤
C4

Kt
∑
j3

(
∑
j1,j2

bj1 j2 j3 ·
∫ ∆

0

∫
T

Bj1(u)Bj2(t1)dt1du

)2

and (2.34)

∫
T⊗2

{
BBBT
[3](0, t1, t2)dt1dt2 · b

}2
dt1dt2 ≤

C5

K2
t

∑
j2,j3

(
∑

1≤j1≤ps

bj1 j2 j3 · Bj1(0)

)2

. (2.35)

Proof of Lemma 2: By applying inequality (13) in (Zhou et al., 1998, p.1770) repeatedly,

∫
[0,∆]×T×T

{
BBBT
[3](u, t1, t2) · b

}2
dudt1dt2

=
∫
[0,∆]×T×T

[
∑
j1

{
∑
j2,j3

bj1 j2 j3 Bj2(t1)Bj3(t2)

}
Bj1(u)

]2

dudt1dt2

≤ C
Ks

∑
j1

∫
T⊗2

{
∑
j2,j3

bj1 j2 j3 Bj2(t1)Bj3(t2)

}2

dt1dt2

≤ C2

KsKt
∑
j1,j2

∫
T

{
∑
j3

bj1 j2 j3 Bj3(t2)

}2

dt2 ≤
C3

KsK2
t
‖b‖2

2,

and hence the right hand side of (2.32) follows. Since inequality (13) of Zhou et al. (1998)

provides both the upper bound and lower bound of the squared L2 norm of a spline func-
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tion, the left hand side of (2.32) is obtained following a similar argument by repeatedly

applying the lower bound inequality of Zhou et al. (1998).

Similarly, inequality (2.33) is derived as follows

∫
T⊗2

{∫
[0,∆]

BBBT
[3](u, t1, t2)du · b

}2

dt1dt2

=
∫

T⊗2

{
∑

j1,j2,j3

bj1 j2 j3 ·
∫
[0,∆]

Bj1(u)du · Bj2(t1)Bj3(t2)

}2

dt1dt2

≤ C3

K2
t

∑
j2,j3

(
∑
j1

bj1 j2 j3 ·
∫
[0,∆]

Bj1(u)du

)2

.

Inequality (2.34) follows similar arguments as (2.33), and (2.35) follows from the fact that

Bj1 j2 j3(0, t1, t2) ≡ 0 if j1 > ps. �

Lemma 3. We define that

ξn :=
1

|Dn|M2
n

∫
D⊗2

n

∫
T⊗2

BBB[3](‖sss1 − sss2‖, t1, t2) · {Y(sss1, t1)Y(sss2, t2)− R(‖sss1 − sss2‖, t1, t2)}

× I (‖sss1 − sss2‖ ≤ ∆)Ns,2(dsss1, dsss2)Nt(dt1|sss1)Nt(dt2|sss2).

Following the same index convention in the previous lemma, the (j1, j2, j3)th entry in ξξξn is

ξ j1 j2 j3 =
1

|Dn|M2
n

∫
D⊗2

n

∫
T⊗2

Bj1 (‖sss1 − sss2‖) Bj2(t1)Bj3(t2)I (‖sss1 − sss2‖ ≤ ∆)

× {Y(sss1, t1)Y(sss2, t2)− R(‖sss1 − sss2‖, t1, t2)}Ns,2(dsss1, dsss2)Nt(dt1|sss1)Nt(dt2|sss2),

for j1 ∈ {1, . . . , Ks + ps} and j2, j3 ∈ {1, . . . , Kt + pt}.

Denote G := {(sssi, tij) : i = 1, . . . , N, j = 1, . . . , Mi} as the collection of the realizations of

the spatial point processNs(dsss) and the temporal point processNt(dt|sss). Under Assumptions 1–
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7, there exists some constant C > 0 not depending on n or any substripts (j1 j2 j3, j′1 j′2 j′3), such

that

• for |j1 − j′1| > ps and min
(
|j2 − j′2|, |j3 − j′3|, |j2 − j′3|, |j3 − j′2|

)
≤ pt,

E

{∣∣∣∣E(ξ j1 j2 j3ξ j′1 j′2 j′3

∣∣G) ∣∣∣∣} ≤ C
(

1
|Dn|K2

s K4
t
+

1
|Dn|MnK2

s K3
t

)
; (2.36)

• for |j1 − j′1| > ps and min
(
|j2 − j′2|, |j3 − j′3|, |j2 − j′3|, |j3 − j′2|

)
> pt,

E

{∣∣∣∣E(ξ j1 j2 j3ξ j′1 j′2 j′3

∣∣G) ∣∣∣∣} ≤ C
|Dn|K2

s K4
t

; (2.37)

• for |j1 − j′1| ≤ ps and min
(
|j2 − j′2|, |j3 − j′3|, |j2 − j′3|, |j3 − j′2|

)
≤ pt,

E

{∣∣∣∣E(ξ j1 j2 j3ξ j′1 j′2 j′3

∣∣G) ∣∣∣∣} ≤ C
(

1
|Dn|KsK4

t
+

1
|Dn|MnKsK3

t
+

1
|Dn|M2

nKsK2
t

)
;

(2.38)

• for |j1 − j′1| ≤ ps, min
(
|j2 − j′2|, |j3 − j′3|

)
> pt and min

(
|j2 − j′3|, |j3 − j′2|

)
> pt,

E

{∣∣∣∣E(ξ j1 j2 j3ξ j′1 j′2 j′3

∣∣G) ∣∣∣∣} ≤ C
(

1
|Dn|KsK4

t
+

1
|Dn|MnKsK3

t

)
; (2.39)

• for |j1 − j′1| ≤ ps and min
(
|j2 − j′2|, |j3 − j′3|, |j2 − j′3|, |j3 − j′2|

)
> pt,

E

{∣∣∣∣E(ξ j1 j2 j3ξ j′1 j′2 j′3

∣∣G) ∣∣∣∣} ≤ C
|Dn|KsK4

t
. (2.40)

It also holds that,

||ξn||22 = Op

(
1

|Dn|K2
t
+

1
|Dn|MnKt

+
1

|Dn|M2
n

)
. (2.41)
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Proof of Lemma 3: We first show (2.36). Following similar calculations as in Guan et al.

(2004),

E{Ns,2(dsss1, dsss2)Ns,2(dsss3, dsss4)Nt(dt1|sss1)Nt(dt2|sss2)Nt(dt3|sss3)Nt(dt4|sss4)}

=λs,4(sss1, sss2, sss3, sss4)λt,1(t1)λt,1(t2)λt,1(t3)λt,1(t4)dsss1dsss2dsss3dsss4dt1dt2dt3dt4

+ λs,3(sss1, sss2, sss4)λt,2(t1, t3)λt,1(t2)λt,1(t4)εsss1(dsss3)dsss1dsss2dsss4dt1dt2dt3dt4

+ λs,3(sss1, sss2, sss3)λt,2(t1, t4)λt,1(t2)λt,1(t3)εsss1(dsss4)dsss1dsss2dsss3dt1dt2dt3dt4

+ λs,3(sss1, sss2, sss4)λt,2(t2, t3)λt,1(t1)λt,1(t4)εsss2(dsss3)dsss1dsss2dsss4dt1dt2dt3dt4

+ λs,3(sss1, sss2, sss3)λt,2(t2, t4)λt,1(t1)λt,1(t3)εsss2(dsss4)dsss1dsss2dsss3dt1dt2dt3dt4

+ λs,3(sss1, sss2, sss4)λt,1(t1)λt,1(t2)λt,1(t4)εsss1(dsss3)εt1(t3)dsss1dsss2dsss4dt1dt2dt4

+ λs,3(sss1, sss2, sss3)λt,1(t1)λt,1(t2)λt,1(t3)εsss1(dsss4)εt1(t4)dsss1dsss2dsss3dt1dt2dt3

+ λs,3(sss1, sss2, sss4)λt,1(t1)λt,1(t2)λt,1(t4)εsss2(dsss3)εt2(t3)dsss1dsss2dsss4dt1dt2dt4

+ λs,3(sss1, sss2, sss3)λt,1(t1)λt,2(t2)λt,1(t3)εsss2(dsss4)εt2(t4)dsss1dsss2dsss3dt1dt2dt3

+ λs,2(sss1, sss2)λt,1(t1)λt,1(t2)εsss1(dsss3)εsss2(dsss4)εt1(t3)εt2(t4)dsss1dsss2dt1dt2

+ λs,2(sss1, sss2)λt,1(t1)λt,1(t2)εsss2(dsss3)εsss1(dsss4)εt2(t3)εt1(t4)dsss1dsss2dt1dt2

+ λs,2(sss1, sss2)λt,1(t1)λt,1(t2)λt,1(t3)εsss1(dsss3)εsss2(dsss4)εt2(t4)dsss1dsss2dt1dt2dt3

+ λs,2(sss1, sss2)λt,1(t1)λt,1(t2)λt,1(t3)εsss2(dsss3)εsss1(dsss4)εt1(t4)dsss1dsss2dt1dt2dt3

+ λs,2(sss1, sss2)λt,1(t1)λt,1(t2)λt,1(t4)εsss1(dsss3)εsss2(dsss4)εt1(t3)dsss1dsss2dt1dt2dt4

+ λs,2(sss1, sss2)λt,1(t1)λt,1(t2)λt,1(t4)εsss2(dsss3)εsss1(dsss4)εt2(t3)dsss1dsss2dt1dt2dt4

+ λs,2(sss1, sss2)λt,2(t1, t3)λt,2(t2, t4)εsss1(dsss3)εsss2(dsss4)dsss1dsss2dt1dt2dt3dt4

+ λs,2(sss1, sss2)λt,2(t2, t3)λt,2(t1, t4)εsss2(dsss3)εsss1(dsss4)dsss1dsss2dt1dt2dt3dt4, (2.42)

where εx(·) is a point measure defined in Karr (1986), such that εx(dy) = 1 if x ∈ dy, 0

otherwise. Here dy is defined to be a small disc centered at y.
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By the definition, utilizing the above decomposition of point process, we have the

following upper bound

E

{∣∣∣∣E(ξ j1 j2 j3ξ j′1 j′2 j′3

∣∣G) ∣∣∣∣}
≤ 1
|Dn|2M4

n
E

{ ∫
D⊗4

n

∫
T⊗4

Bj1 (‖sss1 − sss2‖) Bj′1
(‖sss3 − sss4‖)Bj2(t1)Bj′2

(t3)Bj3(t2)Bj′3
(t4)

× |Cov{Y(sss1, t1)Y(sss2, t2), Y(sss3, t3)Y(sss4, t4)}| × I (‖sss1 − sss2‖ ≤ ∆) I (‖sss3 − sss4‖ ≤ ∆)

×Ns,2(dsss1, dsss2)Ns,2(dsss3, dsss4)Nt(dt1|sss1)Nt(dt2|sss2)Nt(dt3|sss3)Nt(dt4|sss4)

}
. (2.43)

Thus, the right hand side of (2.43) can be decomposed into 17 integrals, denoted in order

as Q1 −Q17 according to the 17 terms in (2.42). We first derive the upper bound of Q1.

By Assumptions 4 and 5, λs,4(sss1, sss2, sss3, sss4)λt,1(t1)λt,1(t2)λt,1(t3)λt,1(t4)/M4
n is positive and

bounded above by some constant uniformly for all sss1, sss2, sss3, sss4 ∈ Dn and t1, t2, t3, t4 ∈ T.

Thus, for some constant C1 > 0,

Q1 =
∫
D⊗4

n

∫
T⊗4

1
|Dn|2M4

n
Bj1 (‖sss1 − sss2‖) Bj′1

(‖sss3 − sss4‖)Bj2(t1)Bj3(t2)Bj′2
(t3)Bj′3

(t4)

× |Cov{Y(sss1, t1)Y(sss2, t2), Y(sss3, t3)Y(sss4, t4)}| · I (‖sss1 − sss2‖ ≤ ∆) I (‖sss3 − sss4‖ ≤ ∆)

× λs,4(sss1, sss2, sss3, sss4)λt,1(t1)λt,1(t2)λt,1(t3)λt,1(t4)dsss1dsss2dsss3dsss4dt1dt2dt3dt4

≤ C1

|Dn|2
∫

T⊗4
Bj2(t1)Bj3(t2)Bj′2

(t3)Bj′3
(t4)

[ ∫
Dn

∫
D∆

∫
D∆

Bj1(‖u‖)Bj′1
(‖v‖)×∫

DdN

|Cov{Y(sss, t1)Y(sss + u, t2), Y(sss +ω, t3)Y(sss +ω + ν, t4)}| dωdudνdsss
]

dt1dt2dt3dt4

=
C1

|Dn|2
∫

T⊗4
Bj2(t1)Bj3(t2)Bj′2

(t3)Bj′3
(t4)

∫
Dn

∫
D∆

∫
D∆

Bj1(‖u‖)Bj′1
(‖v‖)

×
[ ∫
‖ω‖>2∆

|Cov{Y(sss, t1)Y(sss + u, t2), Y(sss +ω, t3)Y(sss +ω + ν, t4)}| dω

+
∫
‖ω‖<2∆

|Cov{Y(sss, t1)Y(sss + u, t2), Y(sss +ω, t3)Y(sss +ω + ν, t4)}| dω
]

× dudνdsssdt1dt2dt3dt4.
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On one hand, Assumption 2 implies that the following fourth-order term is bounded

a constant, i.e.,

|Cov{Y(sss, t1)Y(sss + u, t2), Y(sss +ω, t3)Y(sss +ω + ν, t4)}| ≤ C2

for some constant C2 > 0, when ‖ω‖ ≤ 2∆. On the other hand, let ν > 4 be the constant

defined in Assumption 2 and put κ = ν/(ν− 4) > 1, then by Davydov’s Inequality (Bosq,

2012), when ‖ω‖ > 2∆, ‖u‖ ≤ ∆ and ‖v‖ ≤ ∆,

|Cov{Y(sss, t1)Y(sss + u, t2), Y(sss +ω, t3)Y(sss +ω + ν, t4)}|

≤ 2κ{2αX(‖ω‖)}1/κ{E|Y(sss1, t1)Y(sss + u, t2)|ν/2}2/ν

×
[
E{|Y(sss +ω, t3)Y(sss +ω + ν, t4)|}ν/2

]2/ν

≤ C3{αX(‖ω‖)}1/κ,

for some C3 > 0. Here αX(·) is the α-mixing coefficient define in (2.22). It follows that

Q1 ≤
C4

|Dn|2
∫

T⊗4
Bj2(t1)Bj3(t2)Bj′2

(t3)Bj′3
(t4)

∫
Dn

∫
D∆

∫
D∆

Bj1(‖u‖)Bj′1
(‖v‖)

×
[ ∫
‖ω‖>2∆

C3 · {αX(‖ω‖)}1/κdω +
∫
‖ω‖<2∆

C2dω
]
· dudνdsssdt1dt2dt3dt4,

for some constant C4 > 0. By Assumption 3, αX(‖ω‖) ≤ C‖ω‖−δ1 for all ω and δ1/κ > 2,∫
‖ω‖≥2∆{αX(‖ω‖)}1/κdω ≤ C

∫
‖ω‖≥2∆ ‖ω‖

−δ1/κdω < ∞. Since
∫
‖ω‖<2∆ C2dω is also

bounded, there exists a constant C5 > 0 such that Q1 ≤ C5
|Dn|K2

s K4
t
. Following similar argu-

ments, we can show that, for some constant C6 > 0, Q2 = Q3 = Q4 = Q5 ≤ C6
|Dn|K2

s K4
t
,

and Q6 = Q7 = Q8 = Q9 ≤ C6
|Dn|MnK2

s K3
t
. For Q10 - Q17, either (sss1, sss2) = (sss3, sss4) or

(sss1, sss2) = (sss4, sss3), then ‖sss1 − sss2‖ = ‖sss3 − sss4‖ and Bj1(‖sss1 − sss2‖)Bj′1
(‖sss3 − sss4‖) = 0 if

|j1 − j′1| > ps. As a result, Q10 = Q11 = Q12 = Q13 = Q14 = Q15 = Q16 = Q17 = 0.
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Thus, for |j1− j′1| > ps and min
(
|j2− j′2|, |j3− j′3|, |j2− j′3|, |j3− j′2|

)
≤ pt, we have the

following upper bound,

E

{∣∣∣∣E(ξ j1 j2 j3ξ j′1 j′2 j′3

∣∣G) ∣∣∣∣} ≤ C7

|Dn|K2
s K4

t
+

C7

|Dn|MnK2
s K3

t
,

for some constant C7 > 0. The proof for (2.37) – (2.40) is omitted because it follows similar

arguments as the proof of (2.36). From (2.38), we have

E ||ξn||22 = ∑
j1 j2 j3

E
(

ξ2
j1 j2 j3

)
. ∑

j1 j2 j3

(
1

|Dn|KsK4
t
+

1
|Dn|MnKsK3

t
+

1
|Dn|M2

nKsK2
t

)
= O

(
1

|Dn|K2
t
+

1
|Dn|MnKt

+
1

|Dn|M2
n

)
,

and (2.41) follows. �

Lemma 4. Define

GGGn :=
1

|Dn|M2
n

∫
D⊗2

n

∫
T⊗2

BBB[3](‖sss1 − sss2‖, t1, t2) · BBBT
[3](‖sss1 − sss2‖, t1, t2)

×I (‖sss1 − sss2‖ ≤ ∆)Ns,2(dsss1, dsss2)Nt(dt1|sss1)Nt(dt2|sss2),

and GGG = E (GGGn). Under Assumptions 1 – 6,

||GGGn −GGG||max = O

 log(n)√
KsK2

t |Dn|

 with probability 1.

Proof of Lemma 4: Our proof is an extension of Lemma A.2 in Wang and Yang (2009) from

univariate spline to multivariate spline and from time series data to spatio-temporal data.

We use index vector `̀̀ = (`1, `2, `3)
T to denote the location of basis function B`1`2`3(u, t1, t2)
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in the tensor product vector BBB[3](u, t1, t2). For `̀̀ ′ = (`′1, `′2, `′3)
T, the (`̀̀, `̀̀ ′)th entry in GGGn

has the following form

g`̀̀,`̀̀′ :=
1

|Dn|M2
n

∫
Dn

∫
Dn

∫
T

∫
T

B`1(‖sss1 − sss2‖)B`′1
(‖sss1 − sss2‖)B`2(t1)B`′2

(t1)

×B`3(t2)B`′3
(t2)I (‖sss1 − sss2‖ ≤ ∆)Ns,2(dsss1, dsss2)Nt(dt1|sss1)Nt(dt2|sss2).

Under the increasing domain framework described in Assumption 1, Dn can be split

into n1 × n2 subsets, i.e.,

Dn =
n1⋃

i=1

n2⋃
j=1

Dn(i, j), n1n2 � n,
√

n . n1,

such that C ≤ |Dn(i, j)| ≤ C′, C ≤ |∂Dn(i, j)| ≤ C′ and dist {Dn(i, j),Dn(i′, j′)} ≥

C min(|i− i′| − 1, |j− j′| − 1), for some C, C′ > 0. we define that

Dn,∆(i, j) = {x ∈ R2 : min
y∈Dn(i,j)

|x− y| ≤ ∆}.

Then we rewrite g`̀̀,`̀̀′ as a summation of n1 × n2 components:

g`̀̀,`̀̀′ =
1
|Dn|

n1

∑
i=1

n2

∑
j=1

g`̀̀,`̀̀′(i, j),

where

g`̀̀,`̀̀′(i, j) :=
1

M2
n

∫
Dn(i,j)

∫
Dn,∆(i,j)

∫
T

∫
T

B`1(‖sss1 − sss2‖)B`′1
(‖sss1 − sss2‖)B`2(t1)B`′2

(t1)

×B`3(t2)B`′3
(t2)I (‖sss1 − sss2‖ ≤ ∆)Ns,2(dsss1, dsss2)Nt(dt1|sss1)Nt(dt2|sss2).

Since |Dn(i, j)| � |Dn,∆(i, j)| � 1, by moment calculations similar to Lemma 3,

E
{

g2
`̀̀,`̀̀′(i, j)

}
.

1
M2

nK2
t Ks

+
1

K4
t Ks

, and
{

E g`̀̀,`̀̀′(i, j)
}2
.

1
K4

t K2
s

.

Denote ζ`̀̀,`̀̀′(i, j) = g`̀̀,`̀̀′(i, j)−E
{

g`̀̀,`̀̀′(i, j)
}

, then

E
{

ζ2
`̀̀,`̀̀′(i, j)

}
= E

{
g2
`̀̀,`̀̀′(i, j)

}
−
{

E g`̀̀,`̀̀′(i, j)
}2
.

1
K4

t Ks
+

1
M2

nK2
t Ks

.
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Similar calculations on higher moments shows that for k ≥ 3, we have the following

expressions

E

∣∣∣g`̀̀,`̀̀′(i, j)
∣∣∣k . 1

K2k
t Ks

+
1

M2k−2
n K2

t Ks
, and

E

∣∣∣ζ`̀̀,`̀̀′(i, j)
∣∣∣k = E

∣∣∣g`̀̀,`̀̀′(i, j)−E
{

g`̀̀,`̀̀′(i, j)
}∣∣∣k ≤ 2k−1

[
E

∣∣∣g`̀̀,`̀̀′(i, j)
∣∣∣k + ∣∣∣E{g`̀̀,`̀̀′(i, j)

}∣∣∣k] .

Hence, there exists a constant C∗ > 0 such that

E

∣∣∣ζ`̀̀,`̀̀′(i, j)
∣∣∣k ≤ C∗2k−1k!E

{
ζ2
`̀̀,`̀̀′(i, j)

}
,

and therefore the Cramér’s condition is satisfied. By the Bernstein’s inequality under the

case k = 3 (see Bosq (2012), Theorem 1.4, page 29), we have, for any q > 0,

P

[∣∣∣∣∣ 1
n1

n1

∑
i=1

ζ`̀̀,`̀̀′(i, j)

∣∣∣∣∣ > εn

]
≤ a1 exp

(
− qε2

n

25m2
2 + 5C∗εn

)
+ a2αN

(⌊
n1

q + 1

⌋)6/7

,

where C∗ is the Cramér’s constant, αN (·) is the α-mixing coefficient for the point process

defined in Assumption 4,

εn =
log(n)√

KsK2
t n
· ε, a1 =

2n1

q
+ 2

(
1 +

ε2
n

25m2
2 + 5C∗εn

)
, m2

2 = max
1≤i≤n1

E
{

ζ2
`̀̀,`̀̀′(i, j)

}
,

a2 = 11n1

(
1 +

5m6/7
3

εn

)
, and m3 = max

1≤i≤n1

{
E

∣∣∣ζ`̀̀,`̀̀′(i, j)
∣∣∣3}1/3

.

By the moment calculations above for ζ`̀̀,`̀̀′(i, j), m2
2 .

1
K4

t Ks
+ 1

M2
nK2

t Ks
, m3 .

(
1

KsK2
t

)1/3
. By

taking q such that ⌊
n1

q + 1

⌋
≥ C1 log(n1) and q ≥ C2n1

log(n1)

for some constants C1, C2 > 0, one has a1 . log(n), a2 .
n3/14n1

log3/7(n)
via Assumption 6.

Assumption 4 yields that for some constant C3,

αN

(⌊
n1

q + 1

⌋)6/7

≤ C3

{
exp(−δ2

√
C1 log(n1))

}6/7
≤ C3n−6δ2

√
C1/7

1 .
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Thus, when C1, ε, and n are large enough, the tail probability is bounded at a polynomial

decay rate,

P

[∣∣∣∣∣ 1
n1

n1

∑
i=1

ζ`̀̀,`̀̀′(i, j)

∣∣∣∣∣ > εn

]
≤ C4 log2(n1) exp(−C5ε2 log(n1)) + C3n3/7−6δ2

√
C1/7

1 ≤ n−10.

A known property of B-splines of order p is that they are non-zero only between p

adjacent knots, and hence B`(x)B`′(x) = 0 if |`− `′| > p. As a result, g`1`2`3,`′1`
′
2`
′
3
= 0 for

|`1 − `′1| > ps or |`2 − `′2| > pt or |`3 − `′3| > pt. For any ε > 0,

P

||GGGn −GGG||max >
log(n)√

KsK2
t n
· ε


≤ ∑

|`1−`′1|≤ps

∑
|`2−`′2|≤pt

∑
|`3−`′3|≤pt

P

∣∣∣g`̀̀,`̀̀′ −E
(

g`̀̀,`̀̀′
)∣∣∣ > log(n)√

KsK2
t n
· ε


≤ ∑

|`1−`′1|≤ps

∑
|`2−`′2|≤pt

∑
|`3−`′3|≤pt

P

[∣∣∣∣∣ 1
|Dn|

n1

∑
i=1

n2

∑
j=1

ζ`̀̀,`̀̀′(i, j)

∣∣∣∣∣ > εn

]

≤ ∑
|`1−`′1|≤ps

∑
|`2−`′2|≤pt

∑
|`3−`′3|≤pt

n2

∑
j=1

P

[
1

|Dn|/n2

∣∣∣∣∣ n1

∑
i=1

ζ`̀̀,`̀̀′(i, j)

∣∣∣∣∣ > εn

]

which implies that

∞

∑
n=1

P

||GGGn −GGG||max >
log(n)√

KsK2
t n
· ε

 ≤ C6

∞

∑
n=1

KsK2
t n2×n−10 ≤ C7

∞

∑
n=1

log2(n)×n−8 < ∞.

Thus, Borel-Cantelli Lemma entails that, with probability 1, ||GGGn −GGG||max = O
{

log(n)√
KsK2

t |Dn|

}
.

�

Lemma 5. Let λmin(·) and λmax(·) be the operators returning the minimal and maximal eigen-

values of a matrix. Under Assumptions 1–6, there exist two positive constants C1 and C2, such

that, as n→ ∞,

C1

KsK2
t
≤ λmin (GGGn) ≤ λmax (GGGn) ≤

C2

KsK2
t

with probability 1. (2.44)
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Proof of Lemma 5: Following the index convention of Lemma 2, let θ = (θj1 j2 j3) ∈

R(Ks+ps)(Kt+pt)
2

be a vector of coefficients for the tensor product spline basis, then

E
(
θTGGGnθ

)
=

1
|Dn|M2

n
E

∫
D⊗2

n

∫
T⊗2

{
∑

j1 j2 j3

θj1 j2 j3 Bj1(‖s1 − s2‖)Bj2(t1)Bj3(t2)

}2

×I(‖sss1 − sss2‖ ≤ ∆)Ns,2(dsss1, dsss2)Nt,2(dt1, dt2)

=
1

|Dn|M2
n

∫
D⊗2

n

∫
T⊗2

{
∑

j1 j2 j3

θj1 j2 j3 Bj1(‖s1 − s2‖)Bj2(t1)Bj3(t2)

}2

×I(‖sss1 − sss2‖ ≤ ∆)λs,2(sss1, sss2)λt,1(t1)λt,1(t2)dsss1dsss2dt1dt2

.
1

|Dn|K2
t

∫
D⊗2

n
∑
j2 j3

{
∑
j1

θj1 j2 j3 Bj1(‖s1 − s2‖)
}2

I(‖sss1 − sss2‖ ≤ ∆)dsss1dsss2

=
1

|Dn|K2
t

∫
Dn

∫
[0,∆]

∑
j2 j3

{
∑
j1

θj1 j2 j3 Bj1(‖u‖)
}2

dudsss2

.
1

|Dn|KsK2
t

∫
Dn

ds2 ∑
j1 j2 j3

θ2
j1 j2 j3 .

1
KsK2

t
‖θ‖2.

Following the same argument, the lower bound of E
(
θTGGGnθ

)
can also be proved. Thus,

there exist two positive constants C̃1 and C̃2, such that, C̃1
KsK2

t
≤ E(θTGGGnθ)

‖θ‖2 ≤ C̃2
KsK2

t
. Lemma

4 and Assumption 6 entails that, with probability 1, ||GGGn −GGG||max = O
{

log(n)√
KsK2

t |Dn|

}
=

o
(

1
KsK2

t

)
. Hence, by the Cauchy-Schwartz Inequality, with probability 1,

|θTGGGnθ−E
(
θTGGGnθ

)
| = |θT(GGGn −GGG)θ|

≤ ||GGGn −GGG||max ∑
j1 j2 j3

|θj1 j2 j3 |

 ∑
|j1−j′1|≤ps

∑
|j2−j′2|≤pt

∑
|j3−j′3|≤pt

|θj′1 j′2 j′3
|


≤

√
ps p2

t ||GGGn −GGG||max ∑
j1 j2 j3

|θj1 j2 j3 |

 ∑
|j1−j′1|≤ps

∑
|j2−j′2|≤pt

∑
|j3−j′3|≤pt

|θj′1 j′2 j′3
|

1/2

≤
√

ps p2
t ||GGGn −GGG||max

(
∑

j1 j2 j3

θ2
j1 j2 j3

)1/2

 ∑
j1 j2 j3

∑
|j1 − j′1 | ≤ ps

|j2 − j′2 | ≤ pt

|j3 − j′3 | ≤ pt

θ2
j′1 j′2 j′3



1/2

= o
(
‖θ‖2

KsK2
t

)
.
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Lemma 6. Let jjj = (j1, j2, j3) and jjj′ = (j′1, j′2, j′3) be two index vectors for tensor product spline

functions, j1, j′1 ∈ {1, . . . , Ks + ps}, j2, j3, j′2, j′3 ∈ {1, . . . , Kt + pt}. Following the convention in

Lemma 4, let g∗j1 j2 j3,j′1 j′2 j′3
be the (jjj, jjj′)th entry of the matrix GGG−1

n . Under Assumptions 1 – 7, there

exist constants C > 0 and τ ∈ (0, 1), such that, when n is large enough,

sup
j1,j′1∈{1,...,Ks+ps},

j2,j3,j′2,j′3∈{1,...,Kt+pt}

∣∣∣∣∣ g∗j1 j2 j3,j′1 j′2 j′3

τ|j1−j′1|+|j2−j′2|+|j3−j′3|

∣∣∣∣∣ ≤ C · KsK2
t with probability 1. (2.45)

Proof of Lemma 6: Here, let spect(GGGn) denote the spectrum of GGGn, i.e., the set of eigenval-

ues of GGGn. Let Pk denote the set of all polynomial functions of degree less than or equal

to k. Proposition 2.1 in Demko et al. (1984) shows that,

inf
fk∈Pk

{
sup

x∈spect(GGGn)

∣∣∣∣1x − fk(x)
∣∣∣∣
}
≤

{√
λmax (GGGn) +

√
λmin (GGGn)

}2

2λmax (GGGn) λmin (GGGn)

{√
λmax (GGGn)−

√
λmin (GGGn)√

λmax (GGGn) +
√

λmin (GGGn)

}k

.

(2.46)

By Lemma 5, there exist two constants C2 > C1 > 0 such that, when n is sufficiently large,

C1

KsK2
t
≤ λmin (GGGn) ≤ λmax (GGGn) ≤

C2

KsK2
t

with probability 1.

Let τ =
√

C2−
√

C1√
C2+
√

C1
∈ (0, 1), and C3 = (

√
C2+
√

C1)
2

2C2C1
. It follows that, when n is sufficiently

large,

inf
fk∈Pk

{
sup

x∈spect(GGGn)

∣∣∣∣1x − fk(x)
∣∣∣∣
}
≤ C3τkKsK2

t with probability 1. (2.47)

An application of the spectral theory (Rudin, 1991) yields that, for any fk ∈ Pk,

‖GGG−1
n − fk(GGGn)‖max = sup

x∈spect(GGGn)

∣∣∣∣1x − fk(x)
∣∣∣∣ .

Note that GGGn is a multiband matrix of multiwidth (2(ps + 1), 2(pt + 1), 2(pt + 1)) (refer to

Mastronardi et al. (2010) for the definitions of a multiband matrix and multiwidth). For

jjj = (j1, j2, j3)T and jjj′ = (j′1, j′2, j′3)
T , let

k† = max
(⌊ |j1 − j′1|

ps + 1

⌋
,
⌊ |j2 − j′2|

pt + 1

⌋
,
⌊ |j3 − j′3|

pt + 1

⌋)
,
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where bxc is the floor of x. For any fk† ∈ Pk† , we write fk†(GGGn) =
(

g†
j1 j2 j3,j′1 j′2 j′3

)
, where

g†
j1 j2 j3,j′1 j′2 j′3

is the (jjj, jjj′)th entry of fk†(GGGn).

• If k† ≥ 1, then g†
j1 j2 j3,j′1 j′2 j′3

= 0 for any fk† ∈ Pk† ,∣∣∣g∗j1 j2 j3,j′1 j′2 j′3

∣∣∣ =
∣∣∣g∗j1 j2 j3,j′1 j′2 j′3

− g†
j1 j2 j3,j′1 j′2 j′3

∣∣∣
= inf

fk†∈Pk†

∣∣∣g∗j1 j2 j3,j′1 j′2 j′3
− g†

j1 j2 j3,j′1 j′2 j′3

∣∣∣
≤ inf

fk†∈Pk†

∥∥∥GGG−1
n − fk†(GGGn)

∥∥∥
max

= inf
fk†∈Pk†

{
sup

x∈spect(GGGn)

∣∣∣∣1x − fk†(x)
∣∣∣∣
}

. (2.48)

• If k† = 0, let fk† ≡ 0 ∈ Pk† , then∣∣∣g∗j1 j2 j3,j′1 j′2 j′3

∣∣∣ ≤ ∥∥∥GGG−1
n

∥∥∥
max

=
∥∥∥GGG−1

n − fk†(GGGn)
∥∥∥

max
= sup

x∈spect(GGGn)

∣∣∣∣1x
∣∣∣∣ = 1

λmin (GGGn)
. (2.49)

Thus, by (2.47), (2.48), (2.49), and Lemma 5, with probability 1, when n sufficiently large,

sup
j1 j2 j3,j′1 j′2 j′3

∣∣∣∣∣g
∗
j1 j2 j3,j′1 j′2 j′3

τk†

∣∣∣∣∣ ≤ C3 · KsK2
t .

Since k† = max
(⌊
|j1−j′1|
ps+1

⌋
,
⌊
|j2−j′2|
pt+1

⌋
,
⌊
|j3−j′3|
pt+1

⌋)
≥
⌊
|j1−j′1|+|j2−j′2|+|j3−j′3|

3(ps+pt+1)

⌋
, we conclude that,

when n is sufficiently large,

sup
j1 j2 j3,j′1 j′2 j′3

∣∣∣∣∣∣∣
g∗j1 j2 j3,j′1 j′2 j′3

τ

⌊
|j1−j′1|+|j2−j′2|+|j3−j′3|

3(ps+pt+1)

⌋
∣∣∣∣∣∣∣ ≤ C3 · KsK2

t with probability 1,

which completes the proof of (2.45). �

Remark. Lemma 6 implies that entries of GGG−1
n decay exponentially. Similar results on the in-

verse of band matrices have been used to establish asymptotic properties of spline estimators in

independent data (Demko et al., 1984). However, due to the random design under the geostatistics

setting in this study, GGGn can not be exactly written as the Kronecker product of band matrices,
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hence Theorem 2.2 of Demko (1977) can not be directly applied. Our proof of Lemma 6 utilizes

properties of multi-band matrices and advanced results from spectral theory and approximation

theory (Mastronardi et al., 2010; Demko et al., 1984).

2.10.3 Proofs of the Main Theorems

2.10.3.1 Proof of Theorem 2.4.1

By Lemma 1, there exists an R∗ ∈ S[3] such that ‖R − R∗‖∞ = O(K−ps
s + K−pt

t ), as

Ks, Kt → ∞. Hence there exists a vector β∗ ∈ R(Ks+ps)(Kt+pt)
2

such that R∗(u, t1, t2) =

BT
[3](u, t1, t2)β

∗. Then,
∣∣∣∣∣∣R̂− R

∣∣∣∣∣∣
L2
≤
∣∣∣∣∣∣R̂− R∗

∣∣∣∣∣∣
L2
+ ||R∗ − R||L2 ≤

∣∣∣∣∣∣BT
[3]

(
β̂− β∗

)∣∣∣∣∣∣
L2
+

C1‖R− R∗‖∞, for some C1 > 0. We write
(
β̂− β∗

)
as a sum of two parts:

(
β̂− β∗

)
=

G−1
n ξn +G−1

n ηn, whereGn and ξn are defined in Lemmas 4 and 3 respectively, and

ηn :=
1

|Dn|M2
n

∫
D⊗2

n

∫
T

∫
T

BBB[3](‖sss1 − sss2‖, t1, t2){R(‖sss1 − sss2‖, t1, t2)− R∗(‖sss1 − sss2‖, t1, t2)}

×I (‖sss1 − sss2‖ ≤ ∆)Ns,2(dsss1, dsss2)Nt(dt1|sss1)Nt(dt2|sss2).

By (2.32) in Lemma 2,∣∣∣∣∣∣BT
[3]G

−1
n ξn

∣∣∣∣∣∣2
L2

=
∫

T

∫
T

∫
[0,∆]

{
BT

[3](u, t1, t2)G
−1
n ξn

}2
dudt1dt2

≤ C2

KsK2
t
‖G−1

n ξn‖2
2 ≤

C2

KsK2
t
{λmin (Gn)}−2 ‖ξn‖2

2.

Lemma 5 shows that λmin(Gn) �
(

1
KsK2

t

)
and Lemma 3 suggests that

||ξn||22 = Op
( 1
|Dn|K2

t
+

1
|Dn|MnKt

+
1

|Dn|M2
n

)
,

we therefore conclude that,

∣∣∣∣∣∣BT
[3]G

−1
n ξn

∣∣∣∣∣∣
L2

= Op

√ Ks

|Dn|
+

√
KsKt

|Dn|Mn
+

√
KsK2

t
|Dn|M2

n

 .
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Using similar calculations, according to (2.32) in Lemma 2, we have the following expres-

sion ∣∣∣∣∣∣BT
[3]G

−1
n ηn

∣∣∣∣∣∣2
L2

=
∫

T

∫
T

∫
[0,∆]

{
BT

[3](u, t1, t2)G
−1
n ηn

}2
dudt1dt2

≤ C3

KsK2
t
‖G−1

n ηn‖2
2 ≤

C3

KsK2
t
{λmin (Gn)}−2 ‖ηn‖2

2.

We derive the upper bound of ‖ηn‖2
2 as follows,

‖ηn‖2
2 ≤

1
|Dn|2M4

n
‖R− R∗‖2

∞ ·
∥∥∥∥ ∫D⊗2

n

∫
T

∫
T

BBB[3](‖sss1 − sss2‖, t1, t2)I (‖sss1 − sss2‖ ≤ ∆)

Ns,2(dsss1, dsss2)Nt(dt1|sss1)Nt(dt2|sss2)

∥∥∥∥2

2

≤ C4

|Dn|2M4
n
· ‖R− R∗‖2

∞ ·
|Dn|2M4

n

KsK2
t
� 1

KsK2
t
‖R− R∗‖2

∞.

We conclude that
∣∣∣∣∣∣BT

[3]G
−1
n ηn

∣∣∣∣∣∣
L2

= op

(
K−ps

s + K−pt
t

)
. Hence,

‖R̂− R‖L2 ≤
∣∣∣∣∣∣BT

[3]G
−1
n ξn

∣∣∣∣∣∣
L2
+
∣∣∣∣∣∣BT

[3]G
−1
n ηn

∣∣∣∣∣∣
L2
+ C1‖R− R∗‖∞

= Op

√ Ks

|Dn|
+

√
KsKt

|Dn|Mn
+

√
KsK2

t
|Dn|M2

n
+ K−ps

s + K−pt
t

 .

�

2.10.3.2 Proof of Theorem 2.4.2

Analogous to the proof of Theorem 2.4.1, we bound ‖Ω̂−Ω‖L2 by three terms,

‖Ω̂−Ω‖L2 =

∣∣∣∣∣∣∣∣∫
[0,∆]

{
R̂(u, ·, ·)− R(u, ·, ·)

}
W(u)du

∣∣∣∣∣∣∣∣
L2

≤
∣∣∣∣∣∣∣∣∫

[0,∆]
BT

[3](u, ·, ·)W(u)du
(
β̂− β∗

)∣∣∣∣∣∣∣∣
L2
+ C1‖R− R∗‖∞

≤
∣∣∣∣∣∣∣∣∫

[0,∆]
BT

[3](u, ·, ·)W(u)du ·G−1
n ξn

∣∣∣∣∣∣∣∣
L2

+

∣∣∣∣∣∣∣∣∫
[0,∆]

BT
[3](u, ·, ·)W(u)du ·G−1

n ηn

∣∣∣∣∣∣∣∣
L2
+ C1‖R− R∗‖∞.
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Applying (2.33) in Lemma 2 and using the similiar calculations, we have the following

expression ∣∣∣∣∣∣∣∣∫
[0,∆]

BT
[3](u, ·, ·)W(u)du ·GGG−1

n ξn

∣∣∣∣∣∣∣∣2
L2

=
∫

T2

(∫
[0,∆]

BT
[3](u, t1, t2)W(u)du ·GGG−1

n ξn

)2

dt1dt2

≤ C2

K2
t

∑
i2,i3

∑
i1

 ∑
i′1i′2i′3

g∗i1i2i3,i′1i′2i′3
· ξi′1i′2i′3

 · ∫ ∆

0
Bi1(u)W(u)du


2

=
C2

K2
t

∑
i2,i3

∑
i1,j1

∑
i′1i′2i′3

∑
j′1 j′2 j′3

g∗i1i2i3,i′1i′2i′3
g∗j1i2i3,j′1 j′2 j′3

ξi′1i′2i′3
ξ j′1 j′2 j′3

×
∫ ∆

0
Bi1(u)W(u)du

∫ ∆

0
Bj1(u)W(u)du.

By taking the conditional expectation E(·|G), we have

E

{∣∣∣∣∣∣∣∣∫
[0,∆]

BT
[3](u, ·, ·)W(u)du ·GGG−1

n ξn

∣∣∣∣∣∣∣∣2
L2

∣∣∣∣G
}

≤ C2

K2
t

∑
i2,i3

∑
i1,j1

∑
i′1i′2i′3

∑
j′1 j′2 j′3

g∗i1i2i3,i′1i′2i′3
g∗j1i2i3,j′1 j′2 j′3

·E
(

ξi′1i′2i′3
ξ j′1 j′2 j′3

∣∣G)
×
∫ ∆

0
Bi1(u)W(u)du

∫ ∆

0
Bj1(u)W(u)du

.
1

K2
t K2

s
∑
i2,i3

∑
i1,j1

∑
i′1i′2i′3

∑
j′1 j′2 j′3

∣∣∣g∗i1i2i3,i′1i′2i′3

∣∣∣ ∣∣∣g∗j1i2i3,j′1 j′2 j′3

∣∣∣ · ∣∣∣E(ξi′1i′2i′3
ξ j′1 j′2 j′3

∣∣G)∣∣∣ .

By Lemma 6, when n is sufficiently large, with probability 1,

E

{∣∣∣∣∣∣∣∣∫
[0,∆]

BT
[3](u, ·, ·)W(u)du ·GGG−1

n ξn

∣∣∣∣∣∣∣∣2
L2

∣∣∣∣G
}

. K2
t ∑

i2,i3
∑
i1,j1

∑
i′1i′2i′3

∑
j′1 j′2 j′3

τ|i1−i′1|+|j1−j′1|τ|i2−i′2|+|i2−j′2|τ|i3−i′3|+|i3−j′3| ·
∣∣∣E (ξi′1i′2i′3

ξ j′1 j′2 j′3

∣∣G)∣∣∣ .
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By applying Lemma 3, for two different scenarios, there exists a constant C2 > 0 such

that,

• for |i1 − i′1| ≤ ps,

E
{∣∣∣E(ξi′1i′2i′3

ξ j′1 j′2 j′3

∣∣G)∣∣∣} ≤ C2

(
1

|Dn|KsK4
t
+

1
|Dn|MnKsK3

t
+

1
|Dn|M2

nKsK2
t

)
;

• for |i1 − i′1| > ps,

E
{∣∣∣E(ξi′1i′2i′3

ξ j′1 j′2 j′3

∣∣G)∣∣∣} ≤ C2

(
1

|Dn|K2
s K4

t
+

1
|Dn|MnK2

s K3
t

)
.

Thus, as n→ ∞,

E

{∣∣∣∣∣∣∣∣∫
[0,∆]

BT
[3](u, ·, ·)W(u)du ·GGG−1

n ξn

∣∣∣∣∣∣∣∣2
L2

}

. K2
t ∑

i2,i3
∑
i1,j1

∑
i′1i′2i′3

∑
j′1 j′2 j′3

τ|i1−i′1|+|j1−j′1|τ|i2−i′2|+|i2−j′2|τ|i3−i′3|+|i3−j′3| ·E
{∣∣∣E(ξi′1i′2i′3

ξ j′1 j′2 j′3

∣∣G)∣∣∣}
= K2

t ∑
i2,i3

∑
i1,j1

∑
i′1i′2i′3

∑
j′1 j′2 j′3

τ|i1−i′1|+|j1−j′1|τ|i2−i′2|+|i2−j′2|τ|i3−i′3|+|i3−j′3| ·E
{∣∣∣E(ξi′1i′2i′3

ξ j′1 j′2 j′3

∣∣G)∣∣∣}
×
{

I(|i′1 − j′1| ≤ ps) + I(|i′1 − j′1| > ps)
}

.
(

KsK4
t

|Dn|KsK4
t
+

KsK4
t

|Dn|MnKsK3
t
+

KsK4
t

|Dn|M2
nKsK2

t

)
+

(
K2

s K4
t

|Dn|K2
s K4

t
+

K2
s K4

t
|Dn|MnK2

s K3
t

)
� 1
|Dn|Kt

+
Kt

|Dn|Mn
+

K2
t

|Dn|M2
n

.

Consequently, as n→ ∞,∣∣∣∣∣∣∣∣∫
[0,∆]

BT
[3](u, ·, ·)W(u)du ·GGG−1

n ξn

∣∣∣∣∣∣∣∣
L2

= Op

√ 1
|Dn|

+

√
Kt

|Dn|Mn
+

√
K2

t
|Dn|M2

n

 .

By Jensen’s Inequality,∣∣∣∣∣∣∣∣∫
[0,∆]

BT
[3](u, ·, ·)W(u)du ·GGG−1

n ηn

∣∣∣∣∣∣∣∣2
L2

=
∫

T2

(∫
[0,∆]

BT
[3](u, t1, t2)W(u)du ·GGG−1

n ηn

)2

dt1dt2

∣∣∣∣∣∣BT
[3] ·GGG

−1
n ηn

∣∣∣∣∣∣2
L2
. ‖R− R∗‖2

∞.
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Hence, we conclude that, as n → ∞, the upper bound of ‖Ω̂ −Ω‖L2 has the following

rate

‖Ω̂−Ω‖L2 = Op

√ 1
|Dn|

+

√
Kt

|Dn|Mn
+

√
K2

t
|Dn|M2

n
+ K−ps

s + K−pt
t

 .

�

2.10.3.3 Proof of Theorem 2.4.3

Since ψj’s are eigenfunctions of the covariance function Ω, by the asymptotic expan-

sion of Hall and Hosseini-Nasab (2006),

ψ̂j − ψj = ∑
k 6=j

(ωk −ωj)
−1
〈∫ (

Ω̂−Ω
)
(t1, t2)ψj(t1)dt1, ψk

〉
ψk + Op

(
‖Ω̂−Ω‖2

L2

)
,

for any fixed order j. By Bessel’s inequality, the above expression leads to

∣∣∣∣ψ̂j − ψj
∣∣∣∣

L2 ≤ C1 ·
∣∣∣∣∣∣∣∣∫ (Ω̂−Ω

)
(t1, t2)ψj(t1)dt1

∣∣∣∣∣∣∣∣
L2
+ Op

(
‖Ω̂−Ω‖2

L2

)
.

The proof of Theorem 2.4.3 is complete, if we could show∣∣∣∣∣∣∣∣∫ (Ω̂−Ω
)
(t1, t2)ψj(t1)dt1

∣∣∣∣∣∣∣∣
L2

= Op

(√
1
|D|n

+

√
Kt

|D|nMn
+ K−ps

s + K−pt
t

)
.

Analogous to the proof of Theorem 2.4.2, we bound the integral by three terms∣∣∣∣∣∣∣∣∫ (Ω̂−Ω
)
(t1, t2)ψj(t1)dt1

∣∣∣∣∣∣∣∣
L2

≤
∣∣∣∣∣∣∣∣∫T

∫
[0,∆]

{
R̂(u, t1, ·)− R(u, t1, ·)

}
W(u)ψj(t1)dudt1

∣∣∣∣∣∣∣∣
L2

≤
∣∣∣∣∣∣∣∣∫T

∫
[0,∆]

BT
[3](u, t1, ·)W(u)ψj(t1)dudt1

(
β̂− β∗

)∣∣∣∣∣∣∣∣
L2
+ C2‖R− R∗‖∞

≤
∣∣∣∣∣∣∣∣∫T

∫
[0,∆]

BT
[3](u, t1, ·)W(u)ψj(t1)dudt1 ·G−1

n ξn

∣∣∣∣∣∣∣∣
L2

+

∣∣∣∣∣∣∣∣∫T

∫
[0,∆]

BT
[3](u, t1, ·)W(u)ψj(t1)dudt1 ·G−1

n ηn

∣∣∣∣∣∣∣∣
L2
+ C2‖R− R∗‖∞.
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As
∣∣∣∣∣∣∫T

∫
[0,∆]B

T
[3](u, t1, ·)W(u)ψj(t1)dudt1 ·G−1

n ηn

∣∣∣∣∣∣
L2
. ‖R− R∗‖∞, we only need show

the bound of
∣∣∣∣∣∣∫T

∫
[0,∆]B

T
[3](u, t1, ·)W(u)ψj(t1)dudt1 ·G−1

n ξn

∣∣∣∣∣∣
L2

. Applying Lemma 2,∣∣∣∣∣∣∣∣∫T

∫
[0,∆]

BT
[3](u, t1, ·)W(u)ψj(t1)dudt1 ·G−1

n ξn

∣∣∣∣∣∣∣∣2
L2

=
∫

T

(∫
T

∫
[0,∆]

BT
[3]W(u)ψj(t1)dudt1 ·GGG−1

n ξn

)2

dt2

≤ C4

Kt
∑
i3

∑
i1,i2

 ∑
i′1i′2i′3

g∗i1i2i3,i′1i′2i′3
ξi′1i′2i′3

 · ∫ ∆

0
Bi1(u)W(u)du

∫ ∆

0
Bi2(t1)ψj(t1)dt1


2

.

By taking the conditional expectation E(·|G),

E

{∣∣∣∣∣∣∣∣∫T

∫
[0,∆]

BT
[3](u, t1, ·)W(u)ψj(t1)dudt1 ·G−1

n ξn

∣∣∣∣∣∣∣∣2
L2

∣∣∣∣G
}

.
1

K3
t K2

s
∑
i3

∑
i1,j1

∑
i2,j2

∑
i′1i′2i′3

∑
j′1 j′2 j′3

∣∣∣g∗i1i2i3,i′1i′2i′3

∣∣∣ · ∣∣∣g∗j1 j2i3,j′1 j′2 j′3

∣∣∣ · ∣∣∣E(ξi′1i′2i′3
ξ j′1 j′2 j′3

∣∣G)∣∣∣ .

By Lemma 6, when n is sufficiently large,

E

{∣∣∣∣∣∣∣∣∫T

∫
[0,∆]

BT
[3](u, t1, ·)W(u)ψj(t1)dudt1 ·G−1

n ξn

∣∣∣∣∣∣∣∣2
L2

}

. Kt ∑
i3

∑
i1,j1

∑
i2,j2

∑
i′1i′2i′3

∑
j′1 j′2 j′3

τ|i1−i′1|+|j1−j′1|τ|i2−i′2|+|j2−j′2|τ|i3−i′3|+|i3−j′3| ·E
{∣∣∣E(ξi′1i′2i′3

ξ j′1 j′2 j′3

∣∣G)∣∣∣} .

By the results of Lemma 3, there exists a constant C5 > 0 such that,

• for |i1 − i′1| ≤ ps and |i2 − i′2| ≤ pt,

E

∣∣∣E(ξi1i2i3ξi′1i′2i′3

∣∣G)∣∣∣ ≤ C5

(
1

|Dn|KsK4
t
+

1
|Dn|MnKsK3

t
+

1
|Dn|M2

nKsK2
t

)
;

• for |i1 − i′1| ≤ ps and |i2 − i′2| > pt,

E

∣∣∣E(ξi1i2i3ξi′1i′2i′3

∣∣G)∣∣∣ ≤ C5

(
1

|Dn|KsK4
t
+

1
|Dn|MnKsK3

t

)
;

• for |i1 − i′1| > ps,

E

∣∣∣E(ξi1i2i3ξi′1i′2i′3

∣∣G)∣∣∣ ≤ C5

(
1

|Dn|K2
s K4

t
+

1
|Dn|MnK2

s K3
t

)
.
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Consequently, if we let n → ∞, the upper bound of the expectation can be derived as the

following expression

E

{∣∣∣∣∣∣∣∣∫T

∫
[0,∆]

BT
[3](u, t1, ·)W(u)ψj(t1)dudt1 ·G−1

n ξn

∣∣∣∣∣∣∣∣2
L2

}
. Kt ∑

i3
∑
i1,j1

∑
i2,j2

∑
i′1i′2i′3

∑
j′1 j′2 j′3

τ|i1−i′1|+|j1−j′1|τ|i2−i′2|+|j2−j′2|τ|i3−i′3|+|i3−j′3| ·E
∣∣∣E(ξi1i2i3ξi′1i′2i′3

∣∣G)∣∣∣
≤ C5Kt ∑

i3
∑
i1,j1

∑
i2,j2

∑
i′1i′2i′3

∑
j′1 j′2 j′3

τ|i1−i′1|+|j1−j′1|τ|i2−i′2|+|j2−j′2|τ|i3−i′3|+|i3−j′3|

×
{(

1
|Dn|KsK4

t
+

1
|Dn|MnKsK3

t
+

1
|Dn|M2

nKsK2
t

)
· I(|i′1 − j′1| ≤ ps, |i′2 − j′2| ≤ pt)

+

(
1

|Dn|KsK4
t
+

1
|Dn|MnKsK3

t

)
· I(|i′1 − j′1| ≤ ps, |i′2 − j′2| > pt)

+

(
1

|Dn|K2
s K4

t
+

1
|Dn|MnK2

s K3
t

)
· I(|i′1 − j′1| > ps)

}
. KsK3

t

(
1

|Dn|KsK4
t
+

1
|Dn|MnKsK3

t
+

1
|Dn|M2

nKsK2
t

)
+KsK4

t

(
1

|Dn|KsK4
t
+

1
|Dn|MnKsK3

t

)
+K2

s K4
t

(
1

|Dn|K2
s K4

t
+

1
|Dn|MnK2

s K3
t

)
� 1
|Dn|

+
Kt

|Dn|Mn
.

Thus, as n→ ∞,∣∣∣∣∣∣∣∣∫T

∫
[0,∆]

BT
[3]W(u)ψj(t1)dudt1 ·G−1

n ξn

∣∣∣∣∣∣∣∣
L2

= Op

(√
1
|D|n

+

√
Kt

|D|nMn

)
.

�
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2.10.3.4 Proof of Theorem 2.4.4

The expression of Ĉj(u)− Cj(u) can be rewritten into three integrals,

Ĉj(u)− Cj(u) =
∫

T2
R̂(u, t1, t2)ψ̂j(t1)ψ̂j(t2)dt1dt2 −

∫
T2

R(u, t1, t2)ψj(t1)ψj(t2)dt1dt2

=
∫

T2

{
R̂(u, t1, t2)− R(u, t1, t2)

}
ψj(t1)ψj(t2)dt1dt2

+
∫

T2
R̂(u, t1, t2)

{
ψ̂j(t1)− ψj(t1)

}
ψj(t2)dt1dt2

+
∫

T2
R̂(u, t1, t2)ψ̂j(t1)

{
ψ̂j(t2)− ψj(t2)

}
dt1dt2.

Using similar calculations as in Theorems 2.4.2 and 2.4.3, we can show that,

∫
T2

{
R̂(u, t1, t2)− R(u, t1, t2)

}
ψj(t1)ψj(t2)dt1dt2 = Op

(√
Ks

|Dn|
+ K−ps

s + K−pt
t

)
,

the detail of which is omitted for brevity. By Hölder’s inequality and Theorem 2.4.3,∣∣∣∣∫T2
R̂(u, t1, t2)

{
ψ̂j(t1)− ψj(t1)

}
ψj(t2)dt1dt2

∣∣∣∣
≤

[∫
T2

{
R̂(u, t1, t2)ψj(t2)

}2
dt1dt2

]1/2

· |T| ·
∣∣∣∣ψ̂j − ψj

∣∣∣∣
L2

= Op

(√
1
|D|n

+

√
Kt

|D|nMn
+ K−ps

s + K−pt
t

)
.

Following the same reasoning,∣∣∣∣∫T2
R̂(u, t1, t2)ψ̂j(t1)

{
ψ̂j(t2)− ψj(t2)

}
dt1dt2

∣∣∣∣
= Op

(√
1
|D|n

+

√
Kt

|D|nMn
+ K−ps

s + K−pt
t

)
.

Consequently,∣∣∣∣∣∣Ĉj(u)− Cj(u)
∣∣∣∣∣∣

L2

= Op

(√
Ks

|Dn|
+ K−ps

s + K−pt
t

)
+ Op

(√
1
|D|n

+

√
Kt

|D|nMn
+ K−ps

s + K−pt
t

)
.
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2.10.3.5 Proof of Theorem 2.4.5

It is easy to see
∥∥∥Λ̂−Λ

∥∥∥
L2
≤
∥∥∥Γ̂− Γ

∥∥∥
L2
+
∥∥∥R̂(0, ·, ·)− R(0, ·, ·)

∥∥∥
L2

, we derive the rates

of the two terms separately and the results of Theorem 2.4.5 follow immediately.

Part I (Convergence rate of ‖Γ̂− Γ‖L2): Since Γ̂ is the spline estimator of a 2-dim covari-

ance function, derivation of its convergence rate is a simplified version of Theorem 2.4.1,

which provides the convergence rate of the 3-dim covariance estimator R̂. Therefore, we

only provide a sketch of the proof. Define

Hn :=
1

|Dn|M2
n

∫
Dn

∫
T⊗2

BBB[2](t1, t2) · BBBT
[2](t1, t2)I(t1 6= t2)Nt(dt1|sss)Nt(dt2|sss)Ns(dsss), and

ζn :=
1

|Dn|M2
n

∫
Dn

∫
T⊗2

BBB[2](t1, t2){Y(sss, t1)Y(sss, t2)− Γ(t1, t2)}

×I(t1 6= t2)Nt(dt1|sss)Nt(dt2|sss)Ns(dsss).

Similar results as Lemmas 3 and 5 exist for bivariate tensor product splines: when n

is sufficiently large, with probability 1, C1
K2

Γ
≤ λmin (Hn) ≤ λmax (Hn) ≤ C2

K2
Γ
, for some

positive constants C1 and C2, and

||ζn||22 = Op

(
1

|Dn|K2
Γ
+

1
|Dn|MnKΓ

+
1

|Dn|M2
n

)
.

By spline approximation theory (analogous to Lemma 1), there exists an Γ∗ ∈ SΓ
[2] such

that ‖Γ− Γ∗‖∞ = O(K−pΓ
Γ ), as KΓ → ∞. Write Γ∗(t1, t2) = BT

[2](t1, t2)γ
∗ for some spline

coefficient vector γ∗ ∈ R(KΓ+pΓ)
2
. Then,∣∣∣∣∣∣Γ̂− Γ

∣∣∣∣∣∣2
L2
≤

∣∣∣∣∣∣Γ̂− Γ∗
∣∣∣∣∣∣2

L2
+ ||Γ∗ − Γ||2L2 ≤

∣∣∣∣∣∣BT
[2] (γ̂ − γ

∗)
∣∣∣∣∣∣2

L2
+ C3‖R− R∗‖2

∞

≤
∣∣∣∣∣∣BT

[2]H
−1
n ζn

∣∣∣∣∣∣2
L2
+ C4‖R− R∗‖2

∞

≤ 1
K2

Γ
{λmin (Hn)}−2 ‖ζn‖2

2 + C4‖R− R∗‖2
∞

= Op

(
1
|Dn|

+
KΓ

|Dn|Mn
+

K2
Γ

|Dn|M2
n
+ K−pΓ

Γ

)
.
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Part II (Convergence rate of ‖R̂(0, ·, ·)− R(0, ·, ·)‖L2): We bound
∥∥∥R̂(0, ·, ·)− R(0, ·, ·)

∥∥∥
L2

by the following three terms, Analogous to the proofs of Theorem 2.4.1 and Theorem

2.4.2.∥∥∥R̂(0, ·, ·)− R(0, ·, ·)
∥∥∥

L2
≤
∣∣∣∣∣∣BT

[3](0, ·, ·)G−1
n ξn

∣∣∣∣∣∣
L2
+
∣∣∣∣∣∣BT

[3](0, ·, ·)G−1
n ηn

∣∣∣∣∣∣
L2
+ C5‖R− R∗‖∞.

Applying (2.35) in Lemma 2, we have

∣∣∣∣∣∣BT
[3](0, ·, ·)G−1

n ξn

∣∣∣∣∣∣2
L2
≤ C6

K2
t

∑
i2,i3

 ∑
1≤i1≤ps

 ∑
i′1i′2i′3

g∗i1i2i3,i′1i′2i′3
ξi′1i′2i′3

 · Bi1(0)


2

.

Taking conditional expectation E (·|G) on both sides of the inequality above, we have

E

{∣∣∣∣∣∣BT
[3](0, ·, ·)G−1

n ξn

∣∣∣∣∣∣2
L2

∣∣∣∣G}
.

1
K2

t
∑
i2,i3

∑
1≤i1,j1≤ps

∑
i′1i′2i′3

∑
j′1 j′2 j′3

∣∣∣g∗i1i2i3,i′1i′2i′3

∣∣∣ · ∣∣∣g∗j1i2i3,j′1 j′2 j′3

∣∣∣ ·E(∣∣∣ξi′1i′2i′3
ξ j′1 j′2 j′3

∣∣∣ ∣∣∣∣G) .

By Lemma 6, when n is sufficiently large,

E

{∣∣∣∣∣∣BT
[3](0, ·, ·)G−1

n ξn

∣∣∣∣∣∣2
L2

∣∣∣∣G}
. K2

s K2
t ∑

i2,i3
∑

1≤i1,j1≤ps

∑
i′1i′2i′3

∑
j′1 j′2 j′3

τ|i1−i′1|+|j1−j′1|τ|i2−i′2|+|i2−j′2|τ|i3−i′3|+|i3−j′3| ·E
(∣∣∣ξi′1i′2i′3

ξ j′1 j′2 j′3

∣∣∣ ∣∣∣∣G) .

By Lemma 3, there exists a constant C7 > 0 such that,

• for |i1 − i′1| ≤ ps,

E

∣∣∣E(ξi1i2i3ξi′1i′2i′3

∣∣G)∣∣∣ ≤ C7

(
1

|Dn|KsK4
t
+

1
|Dn|MnKsK3

t
+

1
|Dn|M2

nKsK2
t

)
;

• for |i1 − i′1| > ps,

E

∣∣∣E(ξi1i2i3ξi′1i′2i′3

∣∣G)∣∣∣ ≤ C7

(
1

|Dn|K2
s K4

t
+

1
|Dn|MnK2

s K3
t

)
.
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Consequently, if we let n → ∞, the upper bound of the expectation can be derived as the

following expression

E

{∣∣∣∣∣∣BT
[3](0, ·, ·)G−1

n ξn

∣∣∣∣∣∣2
L2

}
≤ C7K2

s K2
t ∑

i2,i3
∑

1≤i1,j1≤ps

∑
i′1i′2i′3

∑
j′1 j′2 j′3

τ|i1−i′1|+|j1−j′1|τ|i2−i′2|+|i2−j′2|τ|i3−i′3|+|i3−j′3|

×
{(

1
|Dn|KsK4

t
+

1
|Dn|MnKsK3

t
+

1
|Dn|M2

nKsK2
t

)
I(|i′1 − j′1| ≤ ps)

+

(
1

|Dn|K2
s K4

t
+

1
|Dn|MnK2

s K3
t

)
I(|i′1 − j′1| > ps)

}
. K2

s K4
t

(
1

|Dn|KsK4
t
+

1
|Dn|MnKsK3

t
+

1
|Dn|M2

nKsK2
t

)
+K2

s K4
t

(
1

|Dn|K2
s K4

t
+

1
|Dn|MnK2

s K3
t

)
� Ks

|Dn|
+

KsKt

|Dn|Mn
+

KsK2
t

|Dn|M2
n

,

which implies
∣∣∣∣∣∣BT

[3](0, ·, ·)G−1
n ξn

∣∣∣∣∣∣
L2

= Op

(√
Ks
|Dn| +

√
KsKt
|Dn|Mn

+

√
KsK2

t
|Dn|M2

n

)
. Now we

show the convergence rate of
∣∣∣∣∣∣BT

[3](0, ·, ·)G−1
n ηn

∣∣∣∣∣∣
L2

. Define

ηj1 j2 j3 :=
1

|Dn|M2
n

∫
D⊗2

n

∫
T

∫
T

Bj1(‖sss1 − sss2‖)Bj2(t1)Bj3(t2)I (‖sss1 − sss2‖ ≤ ∆)

× {R(‖sss1 − sss2‖, t1, t2)− R∗(‖sss1 − sss2‖, t1, t2)}Ns,2(dsss1, dsss2)Nt(dt1|sss1)Nt(dt2|sss2)

≤ C8

KsK2
t
‖R− R∗‖∞.

Then ηn =
(
ηj1 j2 j3

)
, for j1 ∈ {1, . . . , Ks + ps}, j2, j3 ∈ {1, . . . , Kt + pt}. Following similar

arguments as the proof of
∣∣∣∣∣∣BT

[3](0, ·, ·)G−1
n ξn

∣∣∣∣∣∣
L2

, we have

∣∣∣∣∣∣BT
[3](0, ·, ·)G−1

n ηn

∣∣∣∣∣∣2
L2
≤ C9K2

t ∑
i2,i3

 ∑
1≤i1≤ps

 ∑
i′1i′2i′3

τ|i1−i′1|+|i2−i′2|+|i3−i′3| · |ηi′1i′2i′3
|


2

. ‖R− R∗‖2
∞.
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Hence, we conclude that, as n → ∞, the upper bound of
∥∥∥R̂(0, ·, ·)− R(0, ·, ·)

∥∥∥
L2

has the

following rate

∥∥∥R̂(0, ·, ·)− R(0, ·, ·)
∥∥∥

L2
= Op

√ Ks

|Dn|
+

√
KsKt

|Dn|Mn
+

√
KsK2

t
|Dn|M2

n
+ K−ps

s + K−pt
t

 .

�

2.10.3.6 Proof of Theorem 2.4.6

Since σ̂2
ε − σ2

ε = 1
|T|
∫

T

{
σ̂2

Y(t)− σ2
Y(t)

}
dt − 1

|T|
∫

T

{
Γ̂(t, t)− Γ(t, t)

}
dt, we derive the

convergence rates for the two terms separately, and the result of Theorem 2.4.6 follows.

Part I (Convergence rate of 1
|T|
∫

T

{
σ̂2

Y(t)− σ2
Y(t)

}
dt): Define VVVn := 1

|Dn|Mn

∫
Dn

∫
T BBB[1](t) ·

BBBT
[1](t)Nt(dt|sss)Ns(dsss), and ςn := 1

|Dn|Mn

∫
Dn

∫
T BBB[1](t) ·

{
Y2(sss, t)− σ2

Y(t)
}
Nt(dt|sss)Ns(dsss),

where BBB[1](t) = {Bpε

1,Kε
(t), Bpε

2,Kε
(t), . . . , Bpε

Kε+pε,Kε
(t)}T is a vector of normalized B-spline

functions of order pε, defined on time domain T with equally spaced interior knots κj =

j/(Kε + 1), j = 1, . . . , Kε. We write VVV−1
n =

(
V∗j,j′

)
and ςn =

(
ς j
)
, where V∗j,j′ is the (j, j′)th

entry of VVV−1
n , and ς j is the jth entry of ςn. By similar arguments as Lemmas 3 and 6, with

probability 1, when n is sufficiently large, supj,j′

∣∣∣∣ V∗j,j′

τ|j−j′ |

∣∣∣∣ ≤ C1Kε, for some τ ∈ (0, 1) and

some positive constant C1, and for j, j′ ∈ {1, · · · , Kε + pε},

• for |j− j′| ≤ pε, E
{∣∣∣E(ς jς j′ |G)

∣∣∣} ≤ C2

(
1

|Dn|K2
ε
+ 1
|Dn|MnKε

)
;

• for |j− j′| > pε, E
{∣∣∣E(ς jς j′ |G)

∣∣∣} ≤ C2
|Dn|K2

ε
.

Hence, the following term holds

E

{∫
T

BBBT(t) ·VVV−1
n ςn

}2

. E

{
1

K2
ε

∑
i,i′,j,j′

∣∣∣V∗i,i′ ∣∣∣ · ∣∣∣V∗j,j′ ∣∣∣ · ∣∣∣E(ςi′ς j′ |G)
∣∣∣}

. ∑
i,i′,j,j′

τ|i−i′|+|j−j′| ·E
∣∣∣E(ςi′ς j′ |G)

∣∣∣ . 1
|Dn|

.
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Hence, we conclude that, as n → ∞, the upper bound of 1
|T|
∣∣∫

T

{
σ̂2

Y(t)− σ2
Y(t)

}
dt
∣∣ has

the following rate

1
|T|

∣∣∣∣∫T

{
σ̂2

Y(t)− σ2
Y(t)

}
dt
∣∣∣∣ ≤ ∣∣∣∣∫T

BBBT(t) ·VVV−1
n ςn

∣∣∣∣+ Op

(
K−pε

ε

)
= Op

(√
1
|Dn|

+ K−pε
ε

)
.

Part II (Convergence rate of 1
|T|
∫

T

{
Γ̂(t, t)− Γ(t, t)

}
dt):

LetHn and ζn be as defined in Section 2.10.3.5. We define

H−1
n =

(
H∗j1 j2,j′1 j′2

)
, and ζn =

(
ζ j1 j2

)
,

where H∗j1 j2,j′1 j′2
is the (j1 j2, j′1 j′2)th entry of H−1

n , and ζ j1 j2 is the (j1 j2)th entry of ζn, for

j1, j2, j′1, j′2 ∈ {1, · · · , KΓ + pt}. By similar arguments as Lemmas 3 and 6, with probability

1, when n is sufficiently large,

sup
j1,j2,j′1,j′2

∣∣∣∣∣ H∗j1 j2,j′1 j′2

τ|j1−j′1|+|j2−j′2|

∣∣∣∣∣ ≤ C3K2
Γ,

for some τ ∈ (0, 1) and some constant C3 > 0, and for j1, j2, j′1, j′2 ∈ {1, · · · , KΓ + pΓ},

• for max(|j1 − j′1| , |j2 − j′2| , |j1 − j′2| , |j2 − j′1|) ≤ pΓ ,

E
{∣∣∣E(ζ j1 j2ζ j′1 j′2

|G)
∣∣∣} ≤ C5

(
1

|Dn|K4
Γ
+

1
|Dn|MnK3

Γ
+

1
|Dn|M2

nK2
Γ

)
;

• for max(|j1 − j′1| , |j2 − j′2| , |j1 − j′2| , |j2 − j′1|) > pΓ,

E
{∣∣∣E(ζ j1 j2ζ j′1 j′2

|G)
∣∣∣} ≤ C5

(
1

|Dn|K4
Γ
+

1
|Dn|MnK3

Γ

)
;

• for min(|j1 − j′1| , |j2 − j′2| , |j1 − j′2| , |j2 − j′1|) > pΓ,

E
{∣∣∣E(ζ j1 j2ζ j′1 j′2

|G)
∣∣∣} ≤ C5

|Dn|K4
Γ

.
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Consequently, if we let n → ∞, the upper bound of the expectation can be derived as the

following expression

E

{∫
T

BBB[2](t, t)dt ·H−1ζn

}2

= E

 ∑
j1 j2 j′1 j′2

∫
T

Bj1(t)Bj2(t)dt · H∗j1 j2,j′1 j′2
ζ j′1 j′2


2

≤ E

 ∑
j1 j2 j′1 j′2

∑
i1i2i′1i′2

∫
T

Bj1(t)Bj2(t)dt
∫

T
Bi1(s)Bi2(s)ds · H∗j1 j2,j′1 j′2

H∗i1i2,i′1i′2

∣∣∣E(ζ j′1 j′2
ζi′1i′2
|G
)∣∣∣


. ∑
|j1−j2|<pΓ

∑
|i1−i2|<pΓ

∑
j′1 j′2i′1i′2

K2
Γ · τ|j1−j′1|+|j2−j′2|+|i1−i′1|+|i2−i′2| ·E

∣∣∣E(ζ j′1 j′2
ζi′1i′2
|G
)∣∣∣

.
1
|Dn|

+
KΓ

|Dn|Mn
.

We then have the following rate

1
|T|

∣∣∣∣∫T

{
Γ̂(t, t)− Γ(t, t)

}
dt
∣∣∣∣ ≤ C6

∫
T

BBB[2](t, t)dt ·H−1ζn + Op

(
K−pΓ

Γ

)
= Op

(√
1
|Dn|

+

√
KΓ

|Dn|Mn
+ K−pΓ

Γ

)
.

Therefore, we conclude that

σ̂2
ε − σ2

ε =
1
|T|

∫
T

{
σ̂2

Y(t)− σ2
Y(t)

}
dt− 1

|T|

∫
T

{
Γ̂(t, t)− Γ(t, t)

}
dt

= Op

(√
1
|Dn|

+

√
KΓ

|Dn|Mn
+ K−pΓ

Γ + K−pε
ε

)
.
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2.10.4 Supporting Figures for the Simulation Studies
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Figure 2.8: Mean estimation results for the simulation studies. In each panel, the solid

line is the true mean function, the dashed curve is the mean of µ̂(t), and the shaded area

illustrates the confidence band sformed by the pointwise 5% and 95% percentiles.
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Figure 2.9: Estimation results of iFPCA under Scenario B.
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Figure 2.10: Estimation results of sFPCA under Scenario B. The upper panel shows the

estimation results of principal component functions, while the lower panel shows the

estimation results of spatial covariance functions. In each panel, the solid line is the true

function; the dashed line is the mean of the functional estimator; and the shaded area

illustrates the bands of pointwise 5% and 95% percentiles.
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2.10.5 Supporting Figures for Analysis of London Housing Price Data
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Figure 2.11: Estimation results of R̂(u, 0, 0) for London Property Transaction Price Data:

contour plots R̂(u, ·, ·) standardized by ‖R(u, ·, ·)‖1 =
∫ ∫
|R̂(u, t1, t2)|dt1dt2/|T|2, at u =

0, 1, 2, 3, 4, and 5.
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Figure 2.12: Spatial-temporal pattern of London housing price data: (a) locations of

homes (dot points represent homes on the north side of River Thames, and triangular

points represent homes on the south side); (b) histogram of the number of transactions

per house; (c) histogram of the distance between two homes; (d) histogram of transaction

dates.
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2.10.6 Supporting Figures for Analysis of Zillow Price-rent Ratio Data
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Figure 2.13: Zillow price-to-rent ratio trajectories in the six regions of the San Francisco

Bay Area and the region-specific mean functions (the dark dashed curve in each panel).
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Figure 2.14: Zillow price-to-rent ratio trajectories centered by region-specific mean func-
tions.
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Figure 2.15: Zillow price-to-rent ratio data analysis: contour plots R̂(u, ·, ·) standardized
by ‖R(u, ·, ·)‖1 =

∫ ∫
|R̂(u, t1, t2)|dt1dt2/|T|2, at u = 0, 1, 2, and 3.
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CHAPTER 3. ESTIMATING PLANT GROWTH CURVES AND

DERIVATIVES BY MODELING CROWDSOURCED IMAGE-BASED

DATA

Abstract

Recent advances in field-based plant phenotyping have increased interest in statistical

methods for the analysis of longitudinal phenotypic data derived from sequential images.

In a maize growth study, plants of various genotypes were imaged during the growing

season by hundreds of cameras. Amazon Mechanical Turk (MTurk) workers were hired

to manually mark plant bodies on these images, from which plant heights were obtained.

An important scientific problem is to estimate the effect of genotype and its interaction

with environment on plant growth while adjusting for measurement errors from crowd-

sourced image analysis. We model plant height measurements as discrete observations of

latent smooth growth curves contaminated with MTurk worker random effects and het-

eroscedastic measurement errors. We allow the mean function of the growth curve and

its first derivative to depend on replicates and environmental conditions, and model the

phenotypic variation between genotypes and genotype-by-environment interactions by

functional random effects. We estimate the mean and covariance functions by a robust

penalized tensor product spline approach, and then perform functional principal com-

ponent analysis. As byproducts, the proposed model leads to a new method for assess-

ing the quality of MTurk worker data and a novel index for measuring the sensitivity to

drought for various genotypes. The properties and advantages of the proposed approach

are demonstrated by simulation studies.
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3.1 Introduction

Water stress is one of the leading environmental factors that adversely affect crop

growth and productivity. Exposure to drought conditions during the growing season

may delay the growth of crop plants and decrease yields. In recent decades, the world-

wide occurrence of severe droughts, as a consequence of climate changes (Trenberth et al.,

2014), has become serious threats to food supply and agriculture sustainability. Beyond

advancing irrigation technology, another effective approach to reducing the impacts of

dehydration stress is to breed and cultivate crop varieties with drought tolerance (Guo

et al., 2019; Su et al., 2019). Therefore, it is important to investiagate and understand the

relationship of genotype to phenotype under different levels of irrigation.

Recently we conducted a series of field experiments on maize growth dynamics with

various hybrid genotypes and two irrigation treatments (non-irrigated and irrigated).

The goal of these experiments is to understand how genotypes respond to their environ-

ment, ultimately, to understand the genetic architecture underlying drought tolerance. In

constrast to greenhouse setups (Liang et al., 2017), phenotyping in the field is challenging

due to the high labor requirements needed for plant trait assessment. As a consequence,

plant height is typically assessed at maturity, and only one time-point is measured; infor-

mation of plant performance throughout the growth period is lost. To get a better under-

standing of variation during the entire growth period, a high-throughput plant pheno-

typing platform, called PhieldCam, comprised of a network of hundreds of cameras and

sensors (shown in Figure 3.1) distributed in the fields, was developed to automatically im-

age maize plants in a time-lapse manner. By the end of growing season, around 750, 000

images of plants were collected. A crowdsourcing image survey was performed by hir-

ing online workers via the Amazon Mechanical Turk (MTurk) (http://www.mturk.com)

http://www.mturk.com
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(a) Camera (b) Micro-sensor

Figure 3.1: Photos of water-proof stationary camera and micro-controllers installed in the
fields

platform to mark lines representing maize plant heights on the images. Figure 3.2 de-

mostrates an example image with plant heights marked by one MTurk worker.

Crowdsourcing has been widely used in diverse scientific areas, including biomedicine

(Griffith et al., 2017), computational chemistry (Bravo et al., 2016), plant phenomics (Zhou

et al., 2018), and zoology (Can et al., 2017), for its low cost and overall quality output.

Among others, Amazon MTurk is an increasingly popular crowdsourcing marketplace

for recruiting and obtaining feedback from a large sample on micro-tasks in an inex-

pensive and rapid manner. However, crowdsourcing also has limitations in obtaining

high-quality data. Due to the difficulty of manually verifying the quality of the submit-

ted results, some unenthusiastic workers or spammers may submit low-quality solutions

corrupted with errors (Ipeirotis et al., 2010; Buhrmester et al., 2011). In our study, er-

roneous image processing by some MTurk workers introduced problematic variability

into our maize growth data. The wide availability of crowdsourced data and their noise-

corrupted nature call for the development of new statistical approaches.
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Figure 3.2: An example image with marked plant heights. The magenta vertical lines
connect the highest points with the base points of the plants, parallel to the stalk of the
plants, drawn by some MTurk worker.

In this study, we propose a novel approach for modeling maize growth data obtained

from high-throughput phenotyping technology and crowdsourced image analysis. Un-

der a functional data framework, plant height measurements are modeled as discrete

observations of latent smooth growth curves contaminated with MTurk worker random

effects and measurement errors. We allow the mean function of the growth curve and its

first derivative to depend on replicates and irrigation treatments, and model the pheno-

typic variation between genotypes and genotype-by-environment interactions by func-

tional random effects. We estimate mean functions and covariance functions of the func-

tional random effects by a fast penalized tensor product spline approach. In the estima-
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tion procedure, a Huber loss rather than a quadratic loss is utilized to resist the effect of

outliers, and a monotone constraint is imposed on the estimated mean functions. We then

perform functional principal component (FPC) analysis, and estimate the principal com-

ponent scores by best linear unbiased prediction (BLUP). The latent growth curves and

their first derivatives are approximated by replacing estimated mean functions, FPCs, and

FPC scores by their estimates and predictions.

Compared with existing methodology (Baey et al., 2018; Xu et al., 2018a,b) on the anal-

ysis of plant growth data in the recent literature, there are several innovative aspects to

our proposed approach. First, our model accounts for and adjusts for heteroscedastic

measurement errors from crowdsourced image analysis, and leads to a new method for

assessing the quality of MTurk worker data. Second, our robust procedure for estimat-

ing mean functions and covariance functions can improve the estimation of latent growth

curves and their derivatives. We demonstrate the advantages of our approach by numer-

ical studies in Section 3.6 and 3.7. Third, based on the proposed model and estimated

functions, we develop a novel index for measuring the sensitivity to drought for various

genotypes.

The remainder of this article is organized as follows. In Section 3.2, we introduce the

field experiments, the design of this crowdsourcing image survey, and the plant height

dataset. We describe the functional data model in Section 3.3, and the estimation pro-

cedure in Section 3.4. We detail the interior-point Newton algorithm in Section 3.5. We

analyze our movitating dataset in Section 3.6, and illustrate the property of proposed

methods by simulation studies in Section 3.7. Finally, we conclude with a discussion in

Section 3.8. The appendices contain additional figures and results of data analysis and

simulation studies.
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3.2 Field Experiment, Crowdsourcing Design, and Data

In the field experiments, two field sites were chosen in close proximity to one another

in Grant, Nebraska. One field was a non-irrigated dryland (40.941 150◦N,−101.765 767◦E),

while the other field was irrigated (40.931 545◦N, −101.766 233◦E). There are 100 hybrid

genotypes planted in both locations, and there are two replicates in each location in this

experiment. The genotypes were randomly assigned to rows within each replication. Six

seeds of the same genotype were planted per row (see Figure 3.2). All seeds were planted

on 05/25/2017. Stationary cameras and auxiliary equipment were installed in the fields,

with one camera assigned per plant row. Figure 3.3 provides an overview of one field.

Images were collected in 20-minute intervals from 6 A.M. to 8 P.M. throughout the grow-

ing season resulting in 42 images per day. Images are available between 06/21/2017 and

08/02/2017. As the change of plant height is negligible within a day, one image per day

was used for our analysis. We selected 8 A.M. each day as the time of measurement

because the lowest wind speeds were observed around this time.

After collecting all images, we leveraged crowdsourcing image analysis via the Ama-

zon MTurk platform to obtain measurements of plant heights. A total of 641 MTurk work-

ers were hired, and each worker was assigned a micro-task of annotating a collection of

around 70 images from a specific day. MTurk workers were asked to draw vertical lines

from the tallest point of a healthy plant to the base of the plant, parallel to the stalk of

the plant, e.g., see magenta lines shown in Figure 3.2. For quality assurance, we added

redundancy to the data by assigning at least three MTurk workers to each image.

The dataset of maize height, that we obtained from crowdsourcing image analysis,

consists of 180, 913 measurements of maize height of 100 hybrid geonotypes for two repli-

cates and two treatments (non-irrigated and irrigated) from 06/21/2017 to 07/31/2017.

To reduce variability and obtain a sufficient summary of the data for each experimental



83

Figure 3.3: An overview photo of one field in Grant, Nebraska

unit (i.e., row), we averaged the height measurements of plants in each row. Henceforth,

we referred to these averages as the measurements of plant height. For quality control, the

data points that correspond to abnormal images reported and skipped by MTurk workers

were excluded in the analysis. The skip reasons include corrupted images, less than two

healthy plants on one image, not fully visible images, blurry or glare images, etc. We also

excluded the data provided by MTurk workers who processed fewer than 10 images. The

black points in Figure 3.4 illustrate the height measurements of plants of replicate 1 in the

non-irrigated field.

3.3 Model

Let Yrijkt be the average plant height for replication r under irrigation treatment i for

genotype j measured by Amazon MTurk worker k at t ∈ T days after planting, where
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Figure 3.4: Comparison between the robust penalized spline estimator of the mean func-
tion of plant heights with monotonic constraint and the classical naive penalized spline
estimator. Black points show plant height measurements of replicate 1 from the non-
irrigated field. The red line is the robust penalized spline estimator of the mean function
of plant heights with monotonic constraint, whereas the blue line is the classical naive
penalized spline estimator.
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r = 1, 2, i = 1 represents the irrigated field, i = 2 represents the non-irrigated field, j =

1, . . . , ng, and k = 1, · · · , nm. As described in Section 3.2, each image is assigned to at least

three MTurk workers, and one MTurk worker is assigned the images of various genotypes

but of the same day, replicate, and irrigation treatment. Let Trij ⊂ T be the set of all time

points for which observations of maize heights are available for replication r, irigation

treatment i, and genotype j. LetMrijt be the set of indices of all MTurk workers assigned

to the image for replication r, irrigation treatment i, genotype j, and time t. According to

the crowdsourcing design, Mrijt ∩Mr′i′ jt′ = ∅ for (r, i, t) 6= (r′, i′, t′). Following above

notations, the maize growth dataset in this study can be written as {Yrijkt : r = 1, 2, i =

1, 2, j = 1, . . . , ng, t ∈ Trij, k ∈ Mrijt}.

We model maize height measurements as discrete observations of latent smooth growth

curves contaminated with MTurk worker random effects and measurement errors,

Yrijkt = Xrij(t) + τk + εrijkt, (3.1)

where Xrij(·) is the latent growth curve of jth maize genotype under ith irrigation treat-

ment of rth block replicate, τk is the random effect of kth Amazon Mechanical Turk with

variance σ2
τ , and εrijkt is a white-noise measurement error with MTurk-specific variance

σ2
ε,k. Here, Xrij(t), τk, and εrijkt are mutually independent. We model the random trajec-

tory Xrij(·) by the following functional mixed effects model

Xrij(t) = µri(t) + gj(t) + ηij(t), (3.2)

where µri(·) = E{Xri·(·)} is the mean function for replicate r of irrigation treatment i,

gj(·) and ηij(·) are random functions representing the functional random effects of the

genotype and the genotype-by-irrigation interaction. We assume
{

gj(·)|j = 1, . . . , ng
}

are

i.i.d. realizations of a zero-mean random process g(·) over time with the covariance func-

tionR(t1, t2) = Cov
{

gj(t1), gj(t2)
}

. Furthermore, we assume
{

ηij(·)|i = 1, 2, j = 1, . . . , ng
}
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are i.i.d. realizations of a zero-mean random process η(·) over time with the covariance

functionK(t1, t2) = Cov
{

ηij(t1), ηij(t2)
}

. The two covariance functionsR(·, ·) andK(·, ·)

are both positive semidefinite with spectral decompositions

R(t1, t2) =
∞

∑
`

ω`φ`(t1)φ`(t2) and K(t1, t2) =
∞

∑
`

υ`ψ`(t1)ψ`(t2), (3.3)

where ω1 ≥ ω2 ≥ · · · ≥ 0 and ν1 ≥ ν2 ≥ · · · ≥ 0 are the eigenvalues of R(·, ·) and

K(·, ·), and φ`(·) and ψ`(·) are the respective eigenfunctions. The eigenfunctions are L2

orthonormal, e.g.,
∫

τ φ`(t)φ`′(t)dt =
∫

τ ψ`(t)ψ`′(t)dt is 1 if ` = `′ and is 0 if ` 6= `′. By the

standard Karhunen-Loève expansion, gj(·) and ηij(·) can be written as

gj(t) =
∞

∑
`

ϑj,`φ`(t) and ηij(t) =
∞

∑
`

ζij,`ψ`(t), (3.4)

where ϑj,` :=
∫

gj(t)φ`(t)dt and ζij,` :=
∫

ηij(t)ψ`(t)dt are zero-mean and uncorrelated

random variables such that Var(ϑj,`) = ω` and Var(ζij,`) = υ`. We call ϑj,` and ζij,` the

functional principal component (FPC) scores of gj and ηij. Suppose that the processes

g(·) and η(·) can be approximated by the first q1 and q2 principal components. After

truncating (3.4) up to q1 and q2 orders, the reduced-rank version (Zhou et al., 2010) of the

model (3.2) takes the form as

Xrij(t) = µri(t) +
q1

∑
`

ϑj,`φ`(t) +
q2

∑
`

ζij,`ψ`(t). (3.5)

The sensitivity to drought for various maize genotypes can be measured by the differ-

ence between the growth curves under the irrigated and non-irrigated conditions. Under

above reduced-rank model, we propose the following drought-sensitivity index (DSI)

DSI(j) ≡ 1
|T |

∫
T

max
{

X·1j(t)− X·2j(t), 0
}

dt

=
1
|T |

∫
T

max

{
µ·1(t)− µ·2(t) +

q2

∑
`

(
ζ1j,` − ζ2j,`

)
ψk(t), 0

}
dt, (3.6)

where X·ij(·) = 1
2

{
X1ij(·) + X2ij(·)

}
and µ·i(·) = 1

2 {µ1i(·) + µ2i(·)}.
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Assume that the two stochastic processes g(·) and η(·) are ν-times differentiable,

where ν ≥ 1. By taking the νth derivative on both sides of (3.2),

X(ν)
rij (t) = µ

(ν)
ri (t) + g(ν)j (t) + η

(ν)
ij (t). (3.7)

Thoughout this chapter, we denote f (ν) as the νth derivative of a generic function f . Fol-

lowing the derivative functional principal component analysis developed in Dai et al.

(2016), we consider the covariance functions Rν(t1, t2) = Cov
{

g(ν)j (t1), g(ν)j (t2)
}

and

Kν(t1, t2) = Cov
{

η
(ν)
ij (t1), η

(ν)
ij (t2)

}
, t1, t2 ∈ T , which are two positive semidefinite and

symmetric bivariate functions on T × T . Like the spectral decomposition in (3.3), we

have

Rν(t1, t2) =
∞

∑
`

ω`,νφ`,ν(t1)φ`,ν(t2) and Kν(t1, t2) =
∞

∑
`

υ`,νψ`,ν(t1)ψ`,ν(t2), (3.8)

where ω`,ν and υ`,ν are the eigenvalues of Rν(·, ·) and Kν(·, ·) in a descending order, and

φ`,ν(·) and ψ`,ν(·) are the coresponding eigenfunctions. The Karhunen-Loève expansions

for derivatives g(ν)j (·) and η
(ν)
ij (·) give rise to

g(ν)j (t) =
∞

∑
`

ϑj,`,νφ`,ν(t) and η
(ν)
ij (t) =

∞

∑
`

ζij,`,νψ`,ν(t), (3.9)

where ϑj,`,ν :=
∫

g(ν)j (t)φ`,ν(t)dt and ζij,`,ν :=
∫

η
(ν)
ij (t)ψ`,ν(t)dt with Var(ϑj,`,ν) = ω`,ν and

Var(ζij,`,ν) = υ`,ν. As with (3.5), in practice, we employ the truncated Karhunen-Loève

representation

X(ν)
rij (t) = µ

(ν)
ri (t) +

q1,ν

∑
`

ϑj,`,νφ`,ν(t) +
q2,ν

∑
`

ζij,`,νψ`,ν(t) (3.10)

with finite orders q1,ν, q2,ν ≥ 1.
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3.4 Estimation

3.4.1 Robust Estimation of Shape-Constrained Mean Functions

We estimate the mean functions µri(·) by penalized splines. Define B-spline basis

functions BBB[1](t) = (B1, . . . , BK)
T(t) on T with equally spaced interior knots {dj : j =

1, · · · , K − p} with order p ≥ 2 + ν. We approximate µri(t) by BBBT
[1](t)βββri, where βββri =

(β1,ri, . . . , βK,ri)
T is the spline coefficient vector. A natural naive estimate of βββri is the

solution of

minimize
β∈RK

ng

∑
j=1

∑
t∈Trij

∑
k∈Mrijt

{
Yrijkt − BBBT

[1](t)β
}2

+ λµ,riβ
TΩ[1]β, (3.11)

where Ω[1] =
∫
T

{
BBB(2)
[1] (t)

}⊗2
dt and AAA⊗2 = AAAAAAT for any matrix AAA. The computation of

(3.11) is fast and its closed-form solution is available. However, it has been well docu-

mented that spline smoothing via the squared loss function in (3.11), corresponding to

the least squares ridge regression, can be strongly affected by the outliers and heteroge-

neous errors (Wong et al., 2014). An exploratory analysis of our maize growth dataset has

demonstrated the existence of anomalous data and heteroscedasticity of measurement er-

rors; see Figure 3.4. Therefore, we consider a widely used robust alternative, the Huber

loss (Huber, 1973), denoted by hc(t) = t2 I(|t| ≤ c) + (2c|t| − c2)I(|t| > c), where c > 0 is

a a cutoff point known as the Huber parameter. This function, quadratic for |t| ≤ c and

linear for |t| > c, is a hybrid of squared loss and absolute loss. The estimator with respect

to the Huber loss function down weights the influence of observations whose residuals

have large absolute values.

For the nondecreasing nature of plant growth curves, we impose a shape constraint

on the estimates of mean functions: ∂
∂t µ̂ri(t) ≥ 0 for any t ∈ T . In order to achieve com-

putational feasibility, we relax this constraint by only restricting the constraint of ∂
∂t µ̂ri(·)

on certain points C = {t∗1 , · · · , t∗s } ⊂ T , inspired by the idea of isotonic regression. For
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quadratic spline estimates, it is well known that a sufficient and necessary condition (He

and Shi, 1998) for ∂
∂t µ̂ri(t) ≥ 0 over T is that BBB(1)

[1] (dj) ≥ 0 for any 1 ≤ j ≤ K. So, we choose

C = {d1, · · · , dK} for quadratic splines. For cubic (or higher-order) splines, the choice of

C can be determined by an iterative procedure, e.g. iteratively increasing the size of C

until the estimates are non-decreasing by numerical evaluation.

Combining the robust and monotonic features, we propose estimating µri by µ̂ri(t) =

BBBT
[1](t)β̂ββri, where β̂ββri is the solution of following optimization problem of L2-penalized

Huber loss with inequality constraint,

minimize
β∈RK

ng

∑
j=1

∑
t∈Trij

∑
k∈Mrijt

hc

{
Yrijkt − BBBT

[1](t)β
}
+ λµ,riβ

TΩ[1]β (3.12)

subject to SSSβ � 0,

where SSS =
{

BBB(1)
[1] (t

∗
1), · · · , BBB(1)

[1] (t
∗
s )
}T

and � means element-wise inequality between two

vectors. We employ the interior point method, which is discussed in Section 3.5, to solve

this optimization problem. The ν-derivatives of the mean functions are estimated by tak-

ing direct derivative on the spline approximation functions, i.e.,

µ̂
(ν)
ri (t) =

∂ν

∂tν
BBBT
[1](t)β̂ββri. (3.13)

There are three tuning parameters in the above estimation procedure: the Huber pa-

rameter c, number of spline basis functions K, and penalty parameter λ. For the selection

of c, we first obtain a pilot estimate µ̂c=∞
ri by solving (3.12) with c = ∞ (i.e., quadratic

loss); following Huber (1981), we then choose c = 1.345×MAD, where MAD is the mean

of absolute deviation of the residuals
{

Yrijkt − µ̂c=∞
ri : j = 1, · · · , ng, t ∈ Trij, k ∈ Mrijt

}
, to

ensure 95% efficiency with respect to the standard normal distribution in a location prob-

lem. Due to the property of penalized splines, we set the number of spline basis functions

K to be relatively large, and let the smoothness of the estimates be determined by the

penalty parameter (Ruppert et al., 2003; Li and Ruppert, 2008; Xu et al., 2018a). To avoid
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suffering from potential robustness problems due to outliers in the dataset, we select the

penalty parameter λ by the generalized robust cross validation (GRCV) (Cantoni and

Ronchetti, 2001; Oh et al., 2004; Lee and Oh, 2007) based on the robust predictive error

criterion and pseudo data (Cox, 1983).

3.4.2 Robust Estimation of Covariance Functions and Variances

Covariance estimation plays a key role in the functional principal component analysis.

In this part, we introduce the estimation methods for the covariance functions R(·, ·),

K(·, ·), Rν(·, ·), and Kν(·, ·), as well as the variances σ2
τ and σ2

ε,k. Based on models (3.1)

and (3.2) assumed for maize height measurements and latent growth curve, we have the

following relationships for covariance functions

R(t1, t2) = Cov
{

Yrijkt1 , Yr′i′ jk′t2

}
for i 6= i′ and k 6= k′, (3.14)

G(t1, t2) ≡ Cov
{

Yrijkt1 , Yr′ijk′t2

}
= R(t1, t2) +K(t1, t2) for k 6= k′, (3.15)

σ2
τ = Cov

{
Yrijkt, Yrij′kt

}
for j 6= j′, and (3.16)

σ2
Y,k ≡ Var

{
Yrijkt

}
= G(t, t) + σ2

τ + σ2
ε,k. (3.17)

We apply moment-based penalized tensor-product spline smoothing to estimate covari-

ance functions. Denote the residuals Êrijkt ≡ Yrijkt − µ̂ri(t). Define the 2-dimensional

tensor-product spline basis BBB[2](t1, t2) = BBB[1](t1)⊗ BBB[1](t2). We approximate R(t1, t2) by

R̂(t1, t2) = BBBT
[2]β̂ββR, where β̂ββR minimizes the following penalized sum of Huber losses

∑
1≤r,r′≤2

∑
1≤i 6=i′≤2

∑
1≤j≤ng

∑
k∈Mrijt1

k′∈Mr′ i′ jt2

∑
t1,t2∈T

hc

{
Êrijkt1 Êr′i′ jk′t2 − BBBT

[2](t1, t2)βββR

}
+ λRβββT

RΩ[2]βββR,

(3.18)

where λR is the penalty paramter and Ω[2] is the penalty matrix defined as

Ω[2] =
∫
T

∫
T

{
BBB(0,2)
[2] (t1, t2)

}⊗2
+ 2

{
BBB(1,1)
[2] (t1, t2)

}⊗2
+
{

BBB(2,0)
[2] (t1, t2)

}⊗2
dt1dt2.



91

Note that, for different estimates in this study, the values of c and K can be different; for

simplicity, slightly abusing the notation, we use the same notations c and K for different

estimates.

Similarly, we estimate G by Ĝ = BBBT
[2]β̂ββG , where β̂ββG minimizes the following penalized

sum of Huber losses

∑
1≤r,r′≤2

∑
1≤i≤2

∑
1≤j≤ng

∑
k∈Mrijt1

k′∈Mr′ ijt2
k 6=k′

∑
t1,t2∈T

hc

{
Êrijkt1 Êr′ijk′t2 − BBBT

[2](t1, t2)βββG

}
+ λGβββT

GΩ2βββG , (3.19)

where λG is a penalty tuning parameter. According to the relationship shown in equa-

tion (3.15), a direct estimator of K(·, ·) is K̂(t1, t2) = Ĝ(t1, t2)− R̂(t1, t2). Equation (3.16)

suggests that the following Huber’s M-estimate σ̂2
τ is a robust estimator of σ2

τ ,

σ̂2
τ = argmin

σ2
∑

1≤r≤2
∑

1≤i≤2
∑

1≤j 6=j′≤ng

∑
k∈Mrijt∩Mrij′t

∑
t∈T

hc

(
ÊrijktÊrij′kt − σ2

)
. (3.20)

Next, we estimate the Turker-specific variance σ2
ε,k of measurement error by σ̂2

ε,k = σ̂2
Y,k −

Ĝ(t, t)− σ̂2
τ , where k ∈ Mrijt and σ̂2

Y,k is the solution of

argmin
σ2

∑
1≤r≤2

∑
1≤i≤2

∑
1≤j≤ng

∑
k∈Mrijt

∑
t∈T

hc

(
Ê2

rijkt − σ2
)

. (3.21)

Now let us estimate the covariance functions of the derivatives of the two stochastic pro-

cesses g(·) and η(·). According to the definitions and under regularity conditions, Fu-

bini’s Theorem implies that

Rν(t1, t2) = Cov
{

g(ν)j (t1), g(ν)j (t2)
}
=

∂ν

∂tν
1

∂ν

∂tν
2

Cov
{

gj(t1), gj(t2)
}
= R(ν,ν)(t1, t2), and

Kν(t1, t2) = Cov
{

η
(ν)
ij (t1), η

(ν)
ij (t2)

}
=

∂ν

∂tν
1

∂ν

∂tν
2

Cov
{

ηij(t1), ηij(t2)
}
= K(ν,ν)(t1, t2),

for t1, t2 ∈ T . Thus, we estimateRν(t1, t2) andKν(t1, t2) by R̂(ν,ν)(t1, t2) and K̂(ν,ν)(t1, t2).
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3.4.3 Estimating the Functional Principal Components

A robust principal component analysis can be easily performed by computing the

eigenvalues and eigenvectors of a robust estimator of the covariance or correlation ma-

trix (Croux and Haesbroeck, 2000). Functional principal components can be estimated by

solving an eigen-decomposition problem of the estimated covariance function. The esti-

mation procedures are similar for the pairs of eigenvalues and eigenfunctions, {ω`, φ`},

{υ`, ψ`}, {ω`,ν, φ`,ν}, {υ`,ν, ψ`,ν}. Thus, we take {ω`, φ`} as an example to illustrate the

estimation method. The estimates of ω` and φ` follow

∫
T
R̂(t1, t2)φ̂`(t1)dt1 = ω̂`φ̂`(t2), for ` = 1, 2, . . . , (3.22)

subject to the orthonormal constraints
∫
T φ̂`(t)φ̂`′(t)dt = I(` = `′). This functional eigen-

decomposition problem can be translated into a multivariate problem. Notice that our

estimator R̂ is inherently symmetric. We can arrange the coefficient vector into a sym-

metric matrix ŜSSR, so that R̂(t1, t2) = BBBT
[1](t1)ŜSSRBBB[1](t2). Define an inner product matrix

J =
∫
T BBB[1](t)BBB

T
[1](t)dt, then the eigen-decomposition problem is equivalent to the mul-

tivariate generalized eigenvalue decomposition

β̂T
φ`
J ŜSSRJ β̂φ`

= ω̂`, subject to β̂T
φ`′
J β̂φ`

= I(` = `′), (3.23)

and φ̂`(t) = BBBT
[1](t)β̂φ`

, ` = 1, 2, . . .. Using the estimated FPC functions, the estimate

R̂ can be reconstructed as R̂+(t1, t2) = ∑`≥1 max(ω̂`, 0)φ̂`(t1)φ̂`(t2). This reconstructed

estimate of covariance function is positive semidefinite. Similarly, all other eigenvalues

and eigenfunctions can be estimated by above procedure.
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3.4.4 Estimating the Functional Principal Component Scores

3.4.4.1 Estimating ϑj,` and ζij,`

We estimate the FPC scores by the best linear unbiased prediction (BLUP). Let YYYij =

(Yrijkt)r=1,2,k∈Mrijt,t∈Trij be a column vector of all observations for jth genotype under ith

irrigation treatment and µij = EYYYij. Define ΣYYY,ij = Cov(YYYij), where Cov(Yrijkt, Yr′ijk′t′) =

G(t, t′) + σ2
τ I(k = k′) + σ2

ε,k I(r = r′, k = k′, t = t′). Let Ψij,`,Y be a column vector of

values of ψij,`(·) taken at the same time points as those of YYYij. Under the assumption that

gj(·), ηij(·), τk and εrijkt are jointly Gaussian, E
(
ζij,`|YYYij

)
= υ`ΨT

ij,`,Y Σ−1
YYY,ij(YYYij − µij). The

estimator of ζij,` is the empirical BLUP

ζ̂ij,` = υ̂`Ψ̂
T
ij,`,Y Σ̂

−1
YYY,ij(YYYij − µ̂ij), (3.24)

where υ̂`, Ψ̂ij,`,Y , Σ̂YYY,ij and µ̂ij are the plug-in estimates of the estimators developed in

Section 3.4.1-3.4.3. The FPC scores ϑj,` can be estimated in a similar manner.

3.4.4.2 Estimating ϑj,`,ν and ζij,`,ν

The estimation of principal component scores for the derivatives is a challenging but

essential step for recovering the derivatives of growth curves. Due to the longitudinal

design of this plant phenotype problem, we estimate ϑj,`,ν and ζij,`,ν by the BLUP. Let

Ψij,`,ν,Y = Cov(ζij,`,ν,YYYij) be a column vector with elements of Cov(ζij,`,ν, Yrijkt), where

Cov(ζij,`,ν, Yrijkt) = E

{∫
η
(ν)
ij (s)ψ`,ν(s)ds · ηij(t)

}
=
∫

E
{

η
(ν)
ij (s) · ηij(t)

}
ψ`,ν(s)ds

=
∫
K(ν,0)(s, t)ψ`,ν(s)ds.

Therefore, we estimate Cov(ζij,`,ν, Yrijkt) by
∫
K̂(ν,0)(s, t)ψ̂`,ν(s)ds.

Since the derivative of a differentiable Gaussian process is still Gaussian, under the

same assumption of Gaussianity as above, E
(
ζij,`,ν|YYYij

)
= ΨT

ij,`,ν,Y Σ−1
YYY,ij(YYYij − µij). The
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estimator of ζij,`,ν is the empirical BLUP ζ̂ij,` = Ψ̂T
ij,`,ν,Y Σ̂

−1
YYY,ij(YYYij − µ̂ij). We estimate ϑj,`,ν

in a similar manner.

Now we can recover the latent growth curves and their derivatives with respect to

different combinations of genotypes, replicates, and irrigation treatments, by plugging in

the estimates of mean functions, FPC functions and scores, i.e.,

X̂rij(t) = µ̂ri(t) +
q1

∑
`

ϑ̂j,`φ̂`(t) +
q2

∑
`

ζ̂ij,`ψ̂`(t), and (3.25)

X̂(ν)
rij (t) = µ̂

(ν)
ri (t) +

q1,ν

∑
`

ϑ̂j,`,νφ̂`,ν(t) +
q2,ν

∑
`

ζ̂ij,`,νψ̂`,ν(t). (3.26)

As a byproduct, we estimate the drought-sensitivity index for the jth genotype by

D̂SI(j) =
1
|T |

∫
T

max

[
1
2
{µ̂11(t) + µ̂21(t)− µ̂12(t)− µ̂22(t)}+

q2

∑
`

(
ζ̂1j,` − ζ̂2j,`

)
ψ̂k(t), 0

]
dt.

3.5 Algorithm

Due to the semi-smooth nature of Huber loss, it is nontrivial to solve the optimiza-

tion problems (3.12) and (3.18–3.21), and no closed forms exist for their solutions. In

Yi and Huang (2017), a semismooth Newton coordinate descent (SNCD) algorithm was

proposed to compute solution paths of the unconstrained version of the elastic-net penal-

ized Huber loss regression. Here, we apply this method to the estimation of covariance

functions introduced in Section 3.4.2 by solving the unconstrained optimization prob-

lems of (3.18–3.21). The SNCD algorithm was implemented by using R package quantreg

(http://cloud.r-project.org/package=quantreg). However, this SNCD algorithm can-

not be directly used for the inequality constrained problem. Therefore, we propose using

an interior-point Newton algorithm (Boyd and Vandenberghe, 2004) to minimize the L2-

penalized Huber loss with inequality constraint.

http://cloud.r-project.org/package=quantreg
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The perturbed Karush-Kuhn-Tucker (KKT) conditions of problem (3.12) could be writ-

ten as −∑
ng
i=1 ∑t∈T ∑k∈Mrijt

h′c
{

Yrijkt − BBBT
[1](t)β

}
BBB[1](t) + 2λΩ[1]β−STu = 0,

diag(u)Sβ− δ1 = 0, Sβ � 0, and u � 0,

where u = (u1, · · · , us)T, diag(u) = diag(u1, · · · , us), δ is a sufficiently small constant,

and h′c(t) = 2tI(|t| ≤ c) + sign(t) · 2c · I(|t| > c) is the first derivative of hc(·). In

this way, the optimization problem (3.12) is transformed into a root finding problem.

Define F(βββ,u) = ∑
ng
i=1 ∑t∈T ∑k∈Mrijt

h′c
{

Yrijkt − BBBT
[1](t)β

}
BBB[1](t) + 2λΩ[1]β − STu and

G(βββ,u) = diag(u)Sβ − δ1. Let Oh′c(t) = 2I(|t| ≤ c) be a subgradient of h′c(t). The

partial derivatives of F(βββ,u) with respect to βββ and u are
∂

∂βββ F(βββ,u) = ∑
ng
i=1 ∑t∈T ∑k∈Mrijt

Oh′c
{

Yrijkt − BBBT
[1](t)β

}
BBB[1](t)BBB

T
[1](t) + 2λΩ[1], and

∂
∂uF(βββ,u) = −SSST.

The partial derivatives of G(βββ,u) with respect to βββ and u are

∂

∂βββ
G(βββ,u) = diag(u)S, and

∂

∂u
G(βββ,u) = diag(Sβ).

Let
(
β̂k, ûk

)
be the values of (β,u) at the kth iteration of the interior-point Newton algo-

rithm. Denote the Newton direction as4β̂k

4ûk

 :=

 ∂
∂βββ F

(
β̂k, ûk

)
∂

∂uF
(
β̂k, ûk

)
∂

∂βββ G
(
β̂k, ûk

)
∂

∂uG
(
β̂k, ûk

)

−1F

(
β̂k, ûk

)
G
(
β̂k, ûk

)
 . (3.27)

Then, using the interior point method, we update the values of (β,u) for the (k + 1)th

iteration by (
β̂k+1, ûk+1

)
←
(
β̂k, ûk

)
− ςk ·

(
4β̂k,4ûk

)
,

where ςk is the step size selected by the backtracking line search. A complete discription

of the interior-point Newton algorithm is detailed in Algorithm 1. In practice, we recom-

mend using the closed-form solution of unconstrained quadratic loss as the initial input
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β̂0. In our numerical studies in Sections 3.6 and 3.7, the proposed interior-point Newton

algorithm usually converges within 6 iterations with $ = 10−8.

Algorithm 1: Interior-point Newton algorithm

Input: {Yrijkt : r = 1, 2, i = 1, 2, j = 1, . . . , ng, t ∈ Trij, k ∈ Mrijt}: Dataset(
β̂0, û0

)
: initial parameters that satisfy diag(u0)Sβ0 = δ1 and Sβ0 � 0

(λ, α0, $): penalty, line search, and convergence criterion parameters
Output: β̂: estimate of β

while
∥∥∥∥{F

(
β̂k, ûk

)
, G
(
β̂k, ûk

)}T
∥∥∥∥ > $ do

(a.) Given
(
β̂k, ûk

)
, compute F

(
β̂k, ûk

)
and G

(
β̂k, ûk

)
;

(b.) Given
(
β̂k, ûk

)
, compute ∂

∂βββ F(β̂k, ûk), ∂
∂uF(β̂k, ûk), ∂

∂βββ G(β̂k, ûk), and
∂

∂uG(β̂k, ûk) ;

(c.) Compute the Newton direction
(
4β̂k,4ûk

)
;

(d.) Select the step size ςk by a multi-stage backtracking line search:
(i) ςk ← min{1, min{−uk

i /4uk
i : 4uk

i ≤ 0};
(ii) Repeat updating ςk ← α0ςk until S

(
β̂k − ςk4β̂k

)
� 0;

(e.) Obtain
(
β̂k+1, ûk+1

)
←
(
β̂k, ûk

)
− ςk ·

(
4β̂k,4ûk

)
;

end
Set β̂ = β̂k+1.

3.6 Analysis of Maize Growth Data

We employ the proposed model and estimation methods to analyze the motivating

dataset of maize growth described in Sections 3.1 and 3.2. The numbers of FPCs and

penalty parameters in this section and Section 3.7 are selected based on the percentage

variance explained (PVE) (Yao et al., 2005) and the GACV.

First, the proposed method is implemented to estimate mean functions and their deriva-

tives. We choose SSS =
{

BBB(1)
[1] (31), BBB(1)

[1] (31.4), BBB(1)
[1] (31.8), · · · , BBB(1)

[1] (67.6), BBB(1)
[1] (68)

}T
and or-

der of spline p = 4. We apply the interior-point Newton algorithm proposed in Section
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3.5 to solve the optimization problem (3.12). Our estimation results are displayed on the

left panel of Figure 3.5, which shows that on average the maize plants in the irrigated field

are taller than plants in the non-irrigated field. The estimated mean function derivatives

indicate that the maize plants in the non-irrigated field grew very quickly when t > 62.

For comparison, we also provide, in the right panel of Figure 3.5, the naive estimates

which adopt quadratic loss and do not impose the monotonicity constraint. Unlike naive

estimates, our mean function etimates are monotonic everywhere over the time domain.

The covariance functions R(·, ·) and K(·, ·) of genotype and genotype-by-irrigation

random effects are then estimated by applying robust methods proposed in Section 3.4.2.

Both results for robust and naive estimation are illustrated in Figure 3.6. Compared with

naive estimates, our robust estimates of G(t1, t2) and K(t1, t2) have smaller values for

large t1 and t2. Define the total variation as ∑1≤r≤2 ∑1≤i≤2 ∑1≤j≤ng ∑k∈Mrijt ∑t∈T Êrijkt2,

and denote the variation explained by genotype effect and genotype-by-irrigation interac-

tion as ∑1≤r≤2 ∑1≤i≤2 ∑1≤j≤ng ∑k∈Mrijt ∑t∈T Ĝ(t, t). In our analysis, the ratio of the vari-

ation explained by genotype and genotype-by-irrigation effects to the total variation is

97.98/592.91 = 16.52%, which implies that a significant portion of total variation comes

from MTurk worker random effect and measurement error. The estimates of R(1,1)(·, ·),

R(1,0)(·, ·), K(1,1)(·, ·), and K(1,0)(·, ·), are the partial derivatives of R̂(·, ·) and K̂(·, ·). Fol-

lowing the estimation procedure in Section 3.4.3, we obtain the estimates of FPCs (pre-

sented in Figure 3.7) directly from the corresponding estimates of covariance functions.

Based on the PVE criterion, we choose q1 = q1,1 = 3 and q2 = q2,1 = 2.

We also estimate the MTurk worker random effect variance and measurement error

variances. The estimated variance of MTurk worker random effects is σ̂2
τ = 0.00211. Fig-

ure 3.8 is a histogram of all estimated worker-specific measurement error variances. This

figure implies that most measurement error variances are estimated to be smaller than

0.05. Our worker-specific measurement error variance assumption provides a natural
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Figure 3.5: Estimation results of mean functions of maize height and their derivatives: Top
left, mean function estimates by solving the optimization problem (3.12) with robustness
and shape contraint; Top right, naive estimates of mean functions by solving problem
(3.11); Bottom left, first derivatives of the mean function estimates displayed in panel (a);
Bottom right, first derivatives of the mean function estimates displayed in panel (b).
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Figure 3.6: Upper panel: estimated covariance functions of plant height by using the
proposed robust method. Lower panel: estimated covariance functions of plant height by
using the naive penalized spline method.

way to assess the quality of MTurk worker data. In addition to providing insights on

the sources of variations from crowdsourcing image analysis, the estimated variances of

MTurk worker random effects and measurement errors play an important role in estimat-

ing FPC scores. The data points from workers with large estimated measurement error

variance are automatically down weighted in the BLUP procedure.

Finally, after obtaining the estimates of functions, variances of interest, and FPC scores,

we recovered the genotype-specific growth curves and their derivatives, by applying

equations (3.25) and (3.26). Figures 3.9 and 3.10 depict our estimates of the genotype-

specific growth curves and their derivatives for two replicates and two irrigation treat-
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Figure 3.7: Estimation results of functional principal components of maize growth data:
(a) estimated first three eigenfunctions of R (PVE: 89.70%, 6.69%, and 2.40%); (b) esti-
mated first two eigenfunctions of K (PVE: 92.88% and 6.29%); (c) estimated first three
eigenfunctions ofR(1,1) (PVE: 74.02% and 24.90%); (d) estimated first two eigenfunctions
of K(1,1) (PVE: 83.30% and 15.70%);
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ments. As the latent growth curves and their derivatives are modeled as random func-

tions rather than fixed effects, we ”borrow” strength among various genotypes in the

estimation procedures.

One goal of this maize growth study is to identify maize genotypes which are most

sensitive or resistant to water-deficit stress in the context of the entire growth develop-

ment. To answer this scientific question, we computed the values of DSI defined in equa-

tion (3.6) for all 100 genotypes. The computed DSI values range between 0.37 and 8.94.

Figure 3.12 shows examples of recovered growth curves (averaged over two replicates)
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Figure 3.9: Recovered growth curves of all genotypes (distinguished by various colors)
under irrigated and non-irrigated treatments for replicates 1 and 2.
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Figure 3.10: Recovered growth curves of all genotypes (distinguished by various colors)
under irrigated and non-irrigated treatments for replicates 1 and 2.
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of 20 hybrid genotypes as well as their DSI values. The top 5 genotypes that are most

sensitive to drought in terms of DSI are G43, G23, G65, G11, and G55, whereas the top 5

genotypes that are most resistant to drought are G52, G68, G80, G82, and G93.

3.7 Simulation Study

We assess the performance of the proposed estimation methodology using a simula-

tion study that mimics the real data. We generate synthetic data according to the follow-

ing model:

Yrijkt = µ̂ri(t) +
3

∑
`

ϑj,`φ̂`(t) +
2

∑
`

ζij,`ψ̂`(t) + τk + εrijkt, (3.28)

where r = 1, 2, i = 1, 2, j = 1, . . . , ng, t ∈ Trij, k ∈ Mrijt, µ̂ri(·)’s are the estimated mean

functions of our maize growth data, φ̂`(·)’s and ψ̂`(·)’s are the estimated FPC functions,

ϑj,` ∼ Normal(0, ω̂`), ζij,` ∼ Normal(0, υ̂`), τk is the MTurk worker random effect , and

εrijkt is the independent measurement error. We consider the following two scenarios:

• Scenario A (outlier free, homoscedastic error): τk ∼ Normal(0, σ̂2
τ), and εrijkt ∼

Normal(0, 0.005);

• Scenario B (outlier-corrupted, heteroscedastic error): τk ∼ zk ·Normal(0, σ̂2
τ) + (1−

zk) · t2 with zk ∼ Bernoulli(0.95), and εrijkt ∼ Normal(0, σ̂ε,k), where t2 represents a

t-distributed random variable with 2 degrees of freedom.

For each scenario, we simulate 200 datasets then apply the proposed estimation method to

each synthetic dataset. We use (tensor-product) cubic B-splines to estimate mean and co-

variance functions. The interior knots are placed with equal space over the time domain.

We set the number of basis function as 9 for mean estimates and as 64 for all covariance

estimates. We choose q1 = 3 and q2 = q1,1 = q2,1 = 2. The penalty parameters used for

the proposed method are selected by the GRCV based on one simulated dataset, then the
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selected penalty parameters are applied to the other 199 datasets. For comparison, we

also apply the naive method, implemented by setting the huber parameter c = ∞ and

eleminating the monotonic constraint for mean estimates, to the simulated datasets. For

fair comparison, the proposed and naive methods have the same order of splines and the

same set of interior knots. The penalty parameters used for the naive method are selected

by GCV.

In Table 3.1, we summarize the estimation results of the proposed and naive methods

for mean functions, FPCs, growth curves and derivatives under Scenario A and Scenario

B. Graphical summaries of our estimates are presented in Figures 3.13 - 3.20. In each

plot, we compare the mean of our esimator with the true function and provide a confi-

dence band (shown as shaded area) formed by pointwise 5% and 95% percentiles of the

estimator.

Figures 3.13 - 3.16 impy that the estimates by the proposed method perform reason-

ably well. All functional estimates exhibit relatively modest bias, and the pointwise bands

are tight around the true functions. The estimates φ̂1,1(·) and φ̂2,1(·) have considerable

bias, partially due to the fact that they both contribute a small percentage of total varia-

tion and they are derived from the derivatives of estimated covariance functions which

contain estimation errors. The estimates of mean function derivatives have more varia-

tions than the estimates of mean functions. Due to corrupted outliers and heteroscedastic

measurement errors, all estimates under Scenario B produce larger integrated squared

errors than the corresponding estimates under Scenario A.

Under Scenario A, the esimates given by the proposed and naive method perform

similarly, as shown in Table 3.1, which implies that our proposed method can be applied

to the outlier-free case. Under Scenario B, the esimates of mean functions, growth curves,

and derivatives given by the proposed method have smaller integrated squared errors
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than those by the naive method. We conclude that the proposed method is more resistant

to noise perturbation than the naive method.

3.8 Discussion

To our knowledge, this is the first study that analyzes crowdsourced plant growth

data. We provide a statistically sound and practical approach to estimating growth curves

and derivatives of various genotypes under different irrigation conditions. The estimated

growth curves using the proposed robust estimation method have many applications:

on one hand, these curves are used to compute the values of drought-sensitivity index,

which is proposed to quantify the extent of resistance to drought for various genotypes;

on the other hand, the estimated growth curves could serve as alternative values of the

ground truth of the response variable in a training dataset for a machine learning al-

gorithm, because the estimated curves improve upon the original observations by re-

ducing variations and errors introduced into the data via crowdsourcing. Based on the

estimated MTurk-specific measurement error variances, we can evaluate the quality of

MTurk worker data.

This study not only presents a novel application of functional data modeling to plant

data, but also contains novelty in statistical methdology. We propose a robust and shape-

constrained estimation procedure to estimate mean and covariance functions from outlier-

contaminated data, accompanied by efficient optimization algorithms. The advantages of

the proposed method over a standard naive method have been demonstrated by exten-

sive numerical studies.
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Table 3.1: Simulation results on the mean and standard deviation of integrated squared
errors (ISE) for mean functions, FPCs, growth curves, and derivatives estimated by the
proposed and naive methods.

Scenario A Scenario B
Function Proposed Method Naive Method Proposed Method Naive Method

µ11 0.015(0.009) 0.017(0.009) 0.053(0.052) 0.989(1.173)
µ21 0.013(0.007) 0.013(0.007) 0.033(0.020) 0.997(1.232)
µ12 0.015(0.007) 0.016(0.008) 0.038(0.028) 1.081(1.249)
µ22 0.014(0.008) 0.015(0.008) 0.037(0.022) 1.109(1.369)
µ
(1)
11 0.003(0.003) 0.004(0.004) 0.006(0.010) 0.243(0.376)

µ
(1)
21 0.003(0.003) 0.003(0.002) 0.005(0.004) 0.232(0.398)

µ
(1)
12 0.002(0.002) 0.003(0.002) 0.005(0.009) 0.180(0.269)

µ
(1)
22 0.002(0.002) 0.003(0.002) 0.005(0.003) 0.209(0.359)

φ1 0.077(0.175) 0.077(0.176) 0.124(0.212) 0.123(0.166)
φ2 0.916(1.194) 0.850(1.090) 2.106(1.667) 1.674(1.563)
φ3 2.091(1.468) 2.160(1.527) 2.832(1.580) 2.647(1.485)
ψ1 0.016(0.011) 0.013(0.009) 0.028(0.021) 1.853(2.160)
ψ2 0.302(0.361) 0.393(0.733) 0.639(0.699) 3.677(1.028)

φ1,1 0.585(0.551) 0.558(0.562) 1.127(1.051) 1.333(1.097)
φ2,1 1.958(1.051)) 1.904(1.065) 2.486(1.059) 2.453(1.061)
ψ1,1 0.493(0.458) 0.422(0.427) 1.195(0.995) 2.078(0.885)
ψ2,1 1.777(1.207) 1.696(1.164) 1.803(1.219) 1.436(0.870)
X11· 0.059(0.035) 0.060(0.036) 0.067(0.038) 0.196(0.146)
X21· 0.059(0.035) 0.060(0.036) 0.067(0.038) 0.196(0.147)
X12· 0.060(0.038) 0.060(0.036) 0.072(0.043) 0.284(0.237)
X22· 0.060(0.038) 0.060(0.036) 0.072(0.043) 0.288(0.240)
X(1)

11· 0.007(0.003) 0.008(0.003) 0.014(0.009) 0.064(0.046)
X(1)

21· 0.008(0.003) 0.009(0.003) 0.014(0.009) 0.063(0.044)
X(1)

12· 0.007(0.003) 0.008(0.003) 0.015(0.011) 0.095(0.070)
X(1)

22· 0.008(0.003) 0.008(0.003) 0.015(0.011) 0.093(0.071)
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3.9 Appendix A: Supporting Figures for Analysis of Maize Growth
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Figure 3.11: Upper panel: estimated derivatives of covariance functions of plant height
by using the proposed robust method. Lower panel: estimated derivatives of covariance
functions of plant height by using the standard penalized spline method.
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Figure 3.12: Examples of recovered growth curves (averaged over two replicates) of 20
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treatments. The area of shaded area is defined as drought-sensitivity index.
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3.10 Appendix B: Supporting Figures for Simulation Study
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Figure 3.13: Estimation results of µri(·) and µ
(1)
ri (·) by the proposed method under Sce-

nario A in the Simultation Study. In each panel, the solid line is the true function; the
dashed line is the mean of the functional estimator; and the shaded area illustrates the
bands of pointwise 5% and 95% percentiles.
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Figure 3.14: Estimation results of µri(·) and µ
(1)
ri (·) by the proposed method under Sce-

nario B in the Simultation Study. In each panel, the solid line is the true function; the
dashed line is the mean of the functional estimator; and the shaded area illustrates the
bands of pointwise 5% and 95% percentiles.
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Figure 3.15: Estimation results of FPC functions by the proposed method under Scenario
A in the Simultation Study. In each panel, the solid line is the true function; the dashed
line is the mean of the functional estimator; and the shaded area illustrates the bands of
pointwise 5% and 95% percentiles.
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Figure 3.16: Estimation results of FPC functions by the proposed method under Scenario
B in the Simultation Study. In each panel, the solid line is the true function; the dashed
line is the mean of the functional estimator; and the shaded area illustrates the bands of
pointwise 5% and 95% percentiles.
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Figure 3.17: Estimation results of µri(·) and µ
(1)
ri (·) by the naive method under Scenario

A in the Simultation Study. In each panel, the solid line is the true function; the dashed
line is the mean of the functional estimator; and the shaded area illustrates the bands of
pointwise 5% and 95% percentiles.
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Figure 3.18: Estimation results of µri(·) and µ
(1)
ri (·) by the naive method under Scenario

B in the Simultation Study. In each panel, the solid line is the true function; the dashed
line is the mean of the functional estimator; and the shaded area illustrates the bands of
pointwise 5% and 95% percentiles.
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Figure 3.19: Estimation results of FPC functions by the naive method under Scenario A
in the Simultation Study. In each panel, the solid line is the true function; the dashed
line is the mean of the functional estimator; and the shaded area illustrates the bands of
pointwise 5% and 95% percentiles.
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Figure 3.20: Estimation results of FPC functions by the naive method under Scenario B
in the Simultation Study. In each panel, the solid line is the true function; the dashed
line is the mean of the functional estimator; and the shaded area illustrates the bands of
pointwise 5% and 95% percentiles.
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CHAPTER 4. RANDOM FOREST PREDICTION INTERVALS

Abstract

Random forests are among the most popular machine learning techniques for predic-

tion problems. When using random forests to predict a quantitative response, an impor-

tant but often overlooked challenge is the determination of prediction intervals that will

contain an unobserved response value with a specified probability. We propose new ran-

dom forest prediction intervals that are based on the empirical distribution of out-of-bag

prediction errors. These intervals can be obtained as a by-product of a single random

forest. Under regularity conditions, we prove that the proposed intervals have asymp-

totically correct coverage rates. Simulation studies and analysis of 60 real datasets are

used to compare the finite-sample properties of the proposed intervals with quantile re-

gression forests and recently proposed split conformal intervals. The results indicate that

intervals constructed with our proposed method tend to be narrower than those of com-

peting methods while still maintaining marginal coverage rates approximately equal to

nominal levels.

4.1 Introduction

The seminal paper on random forests (Breiman, 2001a) has nearly 44,000 citations as

of April, 2019, according to Google Scholar. The impact of Breiman’s random forests on

machine learning, predictive analytics, data science, and science in general is difficult

to measure but unquestionably substantial. The virtues of random forest methodology,

summarized nicely in the recent review article by Biau and Scornet (2016), include no
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need to specify functional forms relating predictors to a response variable, capable per-

formance for low-sample-size high-dimensional data, general prediction accuracy, easy

parallelization, few tuning parameters, and applicability to a wide range of prediction

problems with categorical or continuous responses.

Like many algorithmic approaches to prediction, random forests are typically used to

produce point predictions that are not accompanied by information about how far those

predictions may be from true response values. From the statistical point of view, this

is unacceptable; a key characteristic that distinguishes statistically rigorous approaches

to prediction from others is the ability to provide quantifiably accurate assessments of

prediction error from the same data used to generate point predictions. Thus, our goal

here is to develop a prediction interval, based on a random forest prediction, that gives

a range of values that will contain an unknown continuous univariate response with any

specified level of confidence.

Formally, suppose (X , Y) ∈ Rp ×R is a random predictor-response pair distributed

according to some unknown distribution G, where Y represents a continuous univariate

response that we wish to predict using its predictor information X . Suppose (X , Y) is

independent of a training set C consisting of observations (X1, Y1), . . . , (Xn, Yn)
iid∼ G. We

seek a prediction interval Iα(X , C) that will cover the response value Y with probability

1− α.

One existing approach for obtaining forest-based prediction intervals involves esti-

mating the conditional distribution of the response variable Y given the predictor vector

X = x via quantile regression forests (Meinshausen, 2006). Lower and upper quantiles

of an estimated conditional distribution naturally provide a prediction interval for the

response at any point x in the predictor space. Prediction intervals produced with quan-

tile regression forests (QRFs) often perform well in terms of conditional coverage at or

above nominal levels (i.e., P[Y ∈ Iα(X , C)|X = x] ≥ 1− α). QRFs are also very versa-
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tile because they do not require the scale or even the shape of the conditional response

distribution to be constant across predictor values. However, this versatility comes at

a cost. Without stronger assumptions about shared features of the conditional response

distributions, each conditional response distribution must be separately estimated using

a relatively small amount of data local to the point x in the predictor space at which a

prediction interval is desired. This can lead to highly variable estimators of conditional

response distributions and QRF intervals that are often quite wide, which diminishes

their informativeness and usefulness in some applications. There are, of course, some

challenging prediction problems where the flexibility of QRFs is needed, but there are

many other problems where common features of conditional response distributions can

be exploited to produce more informative prediction intervals.

In contrast to QRF intervals, our approach to interval construction borrows informa-

tion across the entire training dataset C by assuming that the distribution of a random

forest prediction error (response value less the random forest prediction) can be well ap-

proximated by the empirical distribution of out-of-bag (OOB) prediction errors obtained

from all training observations. Fortunately, the empirical distribution of OOB prediction

errors can be obtained with no additional resampling beyond the resampling used to

construct a single random forest. Once the empirical distribution of the OOB prediction

errors has been obtained, it is straightforward to combine this estimated prediction error

distribution with the random forest prediction of the response value for a new case to ob-

tain a prediction interval. By working with a de-trended version of the response, we can

focus on estimating one prediction error distribution and use this distribution to obtain

all prediction intervals rather than estimating separate conditional response distributions

for all new cases as in QRFs.

Our approach is similar to the general technique of prediction interval construction

via split conformal (SC) inference (Lei et al., 2018). Prediction intervals with guaranteed
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finite-sample marginal coverage probability (i.e., P[Y ∈ Iα(X , C)] ≥ 1− α) can be gen-

erated using SC inference in conjunction with any method for estimating E(Y|X = x),

the conditional mean of a response given the predictor variable values in a vector x. Our

work differs from the random forest interval approach presented as a special case of SC

inference by Lei et al. (2018). Rather than relying on a single random partitioning of the

training set C into two subsets to obtain cross-validated prediction errors as in SC infer-

ence, we use OOB prediction errors that can be naturally obtained from a single random

forest constructed from all training observations. Just as SC inference can serve as a gen-

eral method for interval construction, our OOB-based approach could also be applied

with conditional mean estimation techniques other than random forests. We leave inves-

tigation of such generalizations to future work and maintain the focus of this study on

random forests.

The rest of this chapter is organized as follows. In Section 4.2, we provide some basic

background on the mechanics of random forests, explain some by-products of random

forests, and define our approach to random forest prediction interval construction. Sec-

tion 4.3 introduces four coverage probability types and explains the asymptotic properties

of the proposed out-of-bag random forest prediction intervals. In Section 4.4, we describe

competing approaches for constructing random forest prediction intervals. In Section 4.5,

we compare the finite-sample performance of our prediction intervals to other methods

in a simulation study, in terms of four types of coverage rates and interval widths. In Sec-

tion 4.6, we evaluate the performance of our approach and others on 60 real datasets.

The R code and datasets used in Section 4.5 and Section 4.6 are publicly available at

https://github.com/haozhestat/RFIntervals. We also create an R package rfinterval,

which provides an implementation of all the methods studied in this study. We conclude

with a discussion in Section 4.7. Proofs of main theorems are included in the Appendix.

https://github.com/haozhestat/RFIntervals
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4.2 Constructing Random Forest Prediction Intervals

Our proposed OOB prediction interval, defined in Section 4.2.3, is based on a single

random forest and its by-products. We use the random forest algorithm implemented in

the R package randomForest (Liaw and Wiener, 2002) and summarized in Section 4.2.1.

4.2.1 The Random Forest Algorithm

Based on Fortran code originally provided by Leo Breiman and Adele Cutler, the ran-

domForest R package (Liaw and Wiener, 2002) provides a convenient tool for generating a

random forest. The algorithm has two tuning parameters, referred to as mtry and nodesize

in the randomForest R package and in the description of the algorithm below. These tuning

parameters are discussed more fully after our formal definition of the algorithm.

1. Draw an equal-probability, with-replacement sample of size n from C to create a

bootstrap training dataset C∗ = {(X∗i , Y∗i ) : i = 1, . . . , n}.

2. Use C∗ to grow a regression tree T∗.

(a) Start with all the cases in C∗ in a single root node N .

(b) Draw a simple random sample S of mtry predictor variables from the set of all

p predictor variables.

(c) Consider partitions of the cases in N into subnodes N1 and N2 that can be

defined by considering the values of a predictor variable x ∈ S as follows. If

x is a quantitative variable, consider all possible partitions where cases in N1

satisfy x ≤ c and the cases in N2 satisfy x > c for some value c ∈ R. For a

categorical predictor variable x, let A be the set of all the categories of x, and

consider all possible partitions where Nk is set of cases with x in Ak (k = 1, 2)
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for some disjoint partition of A into nonempty subsets A1 and A2. From the

allowable set of partitions of the cases in N into subnodes N1 and N2 (each

defined by a choice of variable x in S and either a value of c ∈ R or a disjoint

partition of the categories of x), choose the partition that minimizes

2

∑
k=1

∑
i∈Nk

(Y∗i − Ȳ∗k )
2 ,

where, for k = 1, 2, Ȳ∗k is the average response value for cases in subnode k.

(d) For each newly created subnode Ñ with more than nodesize cases, that has

variation in the values of the response and in the values of at least one predictor,

repeat steps (a) through (d) with Ñ in place ofN . Any newly created subnode

with no more than nodesize cases or no variation in either response or predictor

vector values is split no further and is known as a terminal node of the tree T∗.

3. Independently repeat steps 1 and 2 a total of B times to produce trees T∗1 , . . . , T∗B

that constitute a random forest denoted as RF. (Note B may be chosen as a func-

tion of the training dataset C [i.e., B ≡ B(Cn)] so that Monte Carlo variation in the

random forest construction process is not an important source of variation in RF

predictions. Put simply, B ≡ B(Cn) should be large enough so that two random

forests constructed from the same training dataset C do not yield practically impor-

tant differences in predictions for any target x vectors. See Section 2.4 of Biau and

Scornet (2016) for a summary of past work on the choice of B.)

The RF point prediction of the response Y for any specified value of the predictor X

is Ŷ = 1
B ∑B

b=1 Ŷ∗b , where Ŷ∗b is the prediction of Y provided by tree T∗b (b = 1, . . . , B) in

RF. Thus, the RF prediction is simply an average of the predictions for Y provided by the

trees in RF. For each b = 1, . . . , B, the prediction of Y by tree T∗b (i.e., Ŷ∗b ) is determined

as follows. Tree T∗b is defined by the splitting rules selected for each split in step 2(c) of
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tree construction and by the collection of cases that reside in each terminal node of the

tree. By examining the values of the predictor variables in X and applying the splitting

rules to those values, exactly one terminal node of tree T∗b is identified. (Breiman (2001b)

referred to the process of identifying the terminal node associated with X as “dropping

an X down a tree,” a phrase that evokes a useful conceptualization when the root node

of the tree is pictured at the top of a tree diagram with the bifurcations associated with

splitting rules flowing down to terminal nodes at the bottom of the tree diagram.) Once

the terminal node associated with X is identified, the average of the responses for cases

in that terminal node provide Ŷ∗b .

In the construction of each regression tree (step 2), there are two important tuning pa-

rameters that can impact performance. First, mtry determines how many variables are

considered when defining the splitting rule at each node in a tree. Second, nodesize con-

trols the termination of the tree construction process by defining the maximum terminal

node size. If the number of cases in a tree node is greater than nodesize (and variation

among the response values and predictor values for cases in the node remains), the tree-

growing algorithm will split the node by drawing a simple random sample of mtry pre-

dictor variables and searching for the one variable among those selected that yields the

best partition of the node into two subnodes. To evaluate a candidate partition of a node

into two subnodes, each response value is centered on its subnode’s average response

value and then squared and summed across all node observations. The partition that

minimizes this sum of squares is considered best. Once every node in a tree is no longer

eligible for splitting due to its size or lack of within-node variation, the tree construction

process terminates. Both mtry and nodesize can be tuned to strike an effective balance be-

tween variance and bias in predictions, with larger values of mtry and smaller values of

nodesize tending to reduce bias at the cost of greater variance. We will later show that our
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prediction intervals perform well across a range of typical choices for the tuning param-

eters mtry and nodesize.

4.2.2 Random Forest Weights

For all b = 1, . . . , B, the tree prediction of the bth tree, Ŷ∗b , is determined by finding

the terminal node of T∗b that corresponds to X and then computing the average of the

response values for that terminal node. Because the ith training case may be present

multiple times in a single terminal node due to bootstrap resampling with replacement,

Ŷ∗b is a weighted average of the original training response values given by

Ŷ∗b =
n

∑
i=1

v∗biYi,

for some non-negative weights v∗b1, . . . , v∗bn that sum to 1 for each b ∈ {1, . . . , B}. Thus,

the random forest prediction of Y is an average of weighted averages that may be written

as a weighted average of the training response values; i.e.,

Ŷ =
1
B

B

∑
b=1

Ŷ∗b =
1
B

B

∑
b=1

n

∑
i=1

v∗biYi =
n

∑
i=1

(
1
B

B

∑
b=1

v∗bi

)
Yi = w′Y , (4.1)

wherew = [w1, . . . , wn]′ ≡
[

1
B ∑B

b=1 v∗b1, . . . , 1
B ∑B

b=1 v∗bn

]′
is a vector of non-negative weights

that sum to 1 and Y = [Y1, . . . , Yn]′. Due to the algorithm for tree construction and ag-

gregation described in Section 4.2.1, the weight wi on training response Yi will tend to

be large when Xi is close to X , where the notion of closeness is determined in an auto-

mated way (via the tree construction process) to account for the relative importance of

each component of the predictor vector. In this sense, random forests can be viewed as an

adaptive nearest-neighbors prediction method (Lin and Jeon, 2006; Scornet, 2016b; Wager

and Athey, 2018). Aside from providing this useful interpretation of random forest pre-

dictions, random forest weights have been utilized extensively in the development of new

methodologies by treating random forests as adaptive weight generators at a high level.
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For instance, random forest weights play a crucial role in the quantile regression forests of

Meinshausen (2006), a point we explain more thoroughly in upcoming Section 4.4.2. Xu

et al. (2016) proposed a case-specific random forest that replaces the uniform bootstrap

resampling of training cases in Step 1 of the RF algorithm by a weighted bootstrap, where

an initial random forest is used to generate weights specific to a predictor vector of inter-

est. Friedberg et al. (2018) proposed a new approach to high-dimensional nonparametric

regression estimation by using random forest weights to define a kernel function for local

linear regression.

4.2.3 Out-of-bag Prediction Intervals

To establish prediction intervals for response Y based on its RF point predictor Ŷ from

Section 4.2.1, we wish to learn about the distribution of the RF prediction error D ≡ Y− Ŷ;

i.e., we seek the distribution of prediction error that results when predicting a (currently

unavailable) response value Y using random forest RF constructed, by necessity, without

the use of (X , Y). To gain information about the prediction error distribution, we exam-

ine, for each i = 1, . . . , n, the error that results when predicting the ith training response

Yi using a random forest RF(i) constructed without use of case (Xi, Yi). Such a random

forest is readily available for each training case i as a subset of trees from our original

random forest RF. From the bootstrap sampling in step 1 of the random forest algorithm

described in Section 4.2.1, approximately
(

n−1
n

)n
≈ exp(−1) ≈ 0.368 of the B trees in

the original forest are constructed without (Xi, Yi). Thus, for each i = 1, . . . , n, there is

a subforest RF(i) of RF consisting of approximately B · exp(−1) trees formed without the

use of (Xi, Yi). For each i = 1, . . . , n, we can use RF(i) to obtain a prediction of Yi, de-

noted as Ŷ(i). As in equation (4.1), we can express Ŷ(i) as w′(i)Y , where w(i) is a vector
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of non-negative weights that sum to 1. Following Breiman (2001a), we refer to Ŷ(i) as an

out-of-bag (OOB) prediction. Likewise, we refer to the weights in w(i) as OOB weights.

Note that by construction, the ith element of w(i) is zero. Thus, importantly, Yi is not

involved in the OOB prediction Ŷ(i) from forest RF(i), just as Y is not involved in the

prediction Ŷ from forest RF. Consequently, the OOB prediction errors {Di ≡ Yi− Ŷ(i)}n
i=1

provide a faithful representation of the errors incurred when generating a random forest

prediction for a case independent of the training data used to construct the forest.

Because (X1, Y1), . . . , (Xn, Yn), (X , Y) are independent and identically distributed, the

OOB prediction errors D1, . . . , Dn are identically distributed and have approximately the

same distribution as D. The distribution of D differs from the distribution of each OOB

prediction error only in that Ŷ is based on the forest RF that involves n training obser-

vations and B trees, while each OOB prediction error is based on a forest constructed

from n− 1 observations and comprised of a random number of trees varying around the

expected number B · exp(−1). As n and B grow large, the difference between the distribu-

tion of D and the empirical distribution of the OOB prediction errors D1, . . . , Dn becomes

negligible, and it is reasonable to assume

1− α ≈ P
[

D[n,α/2] ≤ D ≤ D[n,1−α/2]

]
= P

[
Ŷ + D[n,α/2] ≤ Y ≤ Ŷ + D[n,1−α/2]

]
, (4.2)

where D[n,γ] is the γ quantile of the empirical distribution of D1, . . . , Dn. Expression (4.2)

suggests
[
Ŷ + D[n,α/2], Ŷ + D[n,1−α/2]

]
as a prediction interval for Y with approximate

coverage probability 1− α. Section 4.3 provides a formal description of some asymptotic

properties of this proposed OOB prediction interval.

When the distribution of D is symmetric, we recommend a slightly modified OOB pre-

diction interval given by Ŷ ± |D|[n,α], where |D|[n,α] is the 1− α quantile of the empirical

distribution of |D1|, . . . , |Dn|. In practice, we recommend this symmetric OOB interval

unless asymmetry in the empirical distribution of D1, . . . , Dn makes the assumption of



128

symmetry for the distribution of D untenable. We use the symmetric version of the OOB

interval throughout all the simulations and data analyses presented in this study.

4.3 Asymptotic Properties of OOB Prediction Intervals

We assume the following four regularity conditions for asymptotic validity of OOB

prediction intervals:

(c.1) (X , Y), (X1, Y1), . . . , (Xn, Yn)
iid∼ G.

(c.2) The response variable follows an additive error model; i.e., Y = m(X) + e, where

m(·) : Rp → R is an unknown mean function and e is a mean-zero error term

independent ofX .

(c.3) The cumulative distribution function (cdf) F(·) of e = Y − m(X) is a continuous

function over R.

(c.4) The RF prediction Ŷ ≡ m̂n(X) and associated RF(1) OOB prediction Ŷ(1) ≡ m̂n,(1)(X1)

are consistent mean estimators; i.e., m̂n(X)
P→ m(X) and m̂n,(1)(X1)

P→ m(X1) as

n→ ∞.

Assumptions (c.1)–(c.3) can be viewed as a relaxation of assumptions typically made

for multiple linear regression, where m(x) is a linear function x′β for some unknown β ∈

Rp and F(·) is the cdf of a normal distribution with mean 0 and some unknown variance

σ2 ∈ R+. The assumption of consistency of the OOB estimator m̂n,(1)(X1) in (c.4) implies

consistency of the OOB estimator for any i = 1, . . . , n because m̂n,(1)(X1), . . . , m̂n,(n)(Xn)

are identically distributed by (c.1). Furthermore, consistency of m̂n,(1)(X1) essentially

entails the consistency of m̂n(X) (as the former involves a smaller forest than the latter),

but these consistency conditions are each explicitly stated in (c.4) for clarity.
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The study of consistency of random forests and other ensemble methods is an active

area of research. Because of the complexity of the random forest algorithm described in

Section 4.2.1, proofs of random forest consistency have been established for simplified

versions of the algorithm that are more amenable to theoretical study. A history of rele-

vant theoretical developments is outlined by Biau and Scornet (2016). In the remainder

of this section, we focus on stating the properties of our OOB intervals that hold when

random forests are consistent.

In this chapter, the theoretical and numerical properties of prediction intervals are

studied with respect to the following four coverage probability types:

• Type I: P[Y ∈ Iα(X , C)] (marginal coverage);

• Type II: P[Y ∈ Iα(X , C)|C] (conditional coverage given C);

• Type III: P[Y ∈ Iα(X , C)|X = x] (conditional coverage givenX = x); and

• Type IV: P[Y ∈ Iα(X , C)|C,X = x] (conditional coverage givenX = x and C).

The following theorems and their corollaries address these four coverage probability

types that can be asymptotically guaranteed for OOB intervals. Proofs of all results are

provided in the Appendix.

Theorem 1. Under conditions (c.1) – (c.4), the 100(1− α)% out-of-bag prediction interval has

asymptotically correct conditional coverage rate given C for any α ∈ (0, 1); that is,

P

{
Y ∈

[
m̂n(X) + D[n,α/2], m̂n(X) + D[n,1−α/2]

] ∣∣∣∣C} P−→ 1− α (4.3)

as n→ ∞ for any α ∈ (0, 1).

Theorem 1 is concerned with Type II coverage, i.e., conditional coverage probability

given a large training dataset. This conditional coverage probability is relevant when
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a training dataset is in hand and interest lies in knowing the chance that an OOB pre-

diction interval produced with this training set for a randomly drawn X will cover the

random response value Y corresponding toX . While Theorem 1 provides an asymptotic

result, we study finite-sample properties of the OOB prediction interval for this type of

conditional coverage in Section 4.5 by drawing a single training dataset and empirically

approximating the conditional coverage probability for that training dataset. The empiri-

cal approximation is obtained by examining the proportion of OOB intervals constructed

from the given training dataset that cover Y across a large number of independent (X , Y)

draws from G. The process is repeated for many training datasets to learn how condi-

tional coverage probability varies as a function of C.

Corollary 1. Under the conditions for Theorem 1,

P
{

Y ∈
[
m̂n(X) + D[n,α/2], m̂n(X) + D[n,1−α/2]

]}
→ 1− α (4.4)

as n→ ∞ for any α ∈ (0, 1).

Corollary 1 is concerned with Type I coverage, i.e., the marginal coverage probability

considered by Lei et al. (2018), which is the chance of drawing both training data C and

(X , Y) ∼ G so that the resulting prediction interval constructed from C and X covers Y.

This marginal coverage probability can be viewed as the conditional probability in Theo-

rem 1 averaged over the distribution of C. We investigate the finite-sample properties of

our OOB interval’s marginal coverage in Section 4.5 by averaging empirical estimates of

conditional coverage over a large number of training dataset drawn from the distribution

of C.

Theorem 2. Let x ∈ Rp be a fixed vector such that m̂n(x)
P→ m(x) as n → ∞, and sup-

pose that conditions (c.1) – (c.4) hold. Then, the 100(1− α)% out-of-bag prediction interval has
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asymptotically correct conditional coverage rate given C andX = x for any α ∈ (0, 1); that is,

P

{
Y ∈

[
m̂n(x) + D[n,α/2], m̂n(x) + D[n,1−α/2]

] ∣∣∣∣C,X = x

}
P−→ 1− α (4.5)

as n→ ∞ for any α ∈ (0, 1).

Theorem 2 extends the conditioning on C in Theorem 1 to conditioning on both C and

X = x. This Type IV coverage probability is relevant for a researcher who has a large

training dataset in hand and a particular target value of x for which prediction of the

corresponding Y (drawn from the conditional distribution of Y given X = x) is desired.

Finite-sample coverage properties for this type of conditional coverage are studied in

Section 4.5 for selected values of x.

Corollary 2. Under the conditions for Theorem 2,

P

{
Y ∈

[
m̂n(x) + D[n,α/2], m̂n(x) + D[n,1−α/2]

] ∣∣∣∣X = x

}
→ 1− α (4.6)

as n→ ∞ for any α ∈ (0, 1).

Corollary 2 provides a relevant result for Type III coverage, i.e., conditional coverage

given X = x, which is the type of conditional coverage established by Meinshausen

(2006) for quantile regression forests (see Section 4.4.2). The conditional coverage proba-

bility in Corollary 2 can be obtained as the expectation of the conditional coverage proba-

bility considered in Theorem 2, where the expectation is taken with respect to the distribu-

tion of the training dataset C. The finite-sample performance of OOB prediction intervals

is studied for this type of conditional coverage in Section 4.5.

4.4 Alternative Random Forest Intervals

In this section, we describe two existing approaches for generating random forest pre-

diction intervals. These methods are compared with the proposed OOB intervals in sim-

ulation and data analysis in Sections 4.5 and 4.6, respectively. To our knowledge, our
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comparison of these methods is the first to appear in the literature. We also mention,

in Section 4.4.3, two recent methods for using random forests to produce a confidence

interval for the conditional mean of Y givenX = x.

4.4.1 Split Conformal Prediction Intervals

The conformal prediction interval framework originally proposed by Vovk et al. (2005,

2009) is an effective general method for generating reliable prediction intervals. However,

the original conformal prediction method is computationally intensive. Lei et al. (2018)

proposed a new method, called split conformal (SC) prediction, that is completely gen-

eral and whose computational cost is a small fraction of the full conformal method. The

algorithm for constructing a SC prediction interval using a random forest prediction is as

follows:

1. Randomly split {1, . . . , n} into two equal-sized subsets L1,L2.

2. Build a random forest from {(Xi, Yi) : i ∈ L1} (a subset of the full training dataset

C) to obtain an estimate of the mean function m(·) denoted as m̂n/2(X).

3. For each i ∈ L2, compute the absolute residual Ri = |Yi − m̂n/2(X)|. Let d be the

kth smallest value in {Ri : i ∈ L2}, where k = d(n/2 + 1)(1− α)e.

4. The split conformal 100(1− α)% prediction interval for Y is [m̂n/2(X)− d, m̂n/2(X) + d].

Under the assumption that (X1, Y1), . . . , (Xn, Yn), (X , Y) iid∼ G and that the residuals

{Ri : i ∈ L2} have a continuous joint distribution, Lei et al. (2018) prove that

1− α ≤ P {Y ∈ [m̂n/2(X)− d, m̂n/2(X) + d]} ≤ 1− α +
2

n + 2
. (4.7)

Note that this is a very useful result because it guarantees finite-sample marginal cover-

age at level no less than 1− α. One potential drawback to the intervals, however, is that
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they are calibrated for gauging the uncertainty of prediction errors from random forests

constructed from n/2 rather than n observations. We find that this sample splitting can

result in slightly conservative finite-sample performance with regard to interval width.

Nonetheless, the SC intervals do work well in our simulations and data analyses pre-

sented in Sections 4.5 and 4.6.

From a computational standpoint, SC intervals are extremely efficient compared to

the original conformal method. Compared to our proposed approach, which requires the

construction of only one random forest for both point prediction and interval estimation,

SC intervals involve the construction of a random forest from a randomly selected half of

the original training dataset. We expect that most users of random forest methodology

will desire a random forest point prediction based on the full training dataset as well as a

prediction interval. Thus, the SC approach for random forests can be viewed as requiring

the construction of two forests rather than just the one needed for our random forest point

prediction and OOB interval. Of course, this extra cost of a second forest can be avoided

altogether for users who are satisfied with the point prediction provided by m̂n/2(X) in

step 2 of the SC interval method that is based on a randomly selected half of the training

dataset.

4.4.2 Quantile Regression Forest

As discussed in Section 4.1, a QRF (Meinshausen, 2006) can be used to estimate the

conditional distribution of Y givenX = x, and quantiles from this estimated distribution

can be used to form a prediction interval for Y. To understand in more detail how a QRF

works, it is useful to revisit the RF weights w1, . . . , wn defined in Section 4.2.2. Based on

the algorithm for random forest construction and the method for predicting a response

value via a random forest described in Section 4.2.1, each RF weight depends on both the
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training dataset C and the value of X . To emphasize conditioning on X = x, we will

write, throughout this section, weight wi as wi(x) for all i = 1, . . . , n.

Equation (4.1) from Section 4.2.2 shows that the RF prediction of Y can be viewed as

the mean of a discrete distribution that places probability wi(x) on Yi for all i = 1, . . . , n.

A QRF uses this discrete distribution as an estimate of the conditional distribution of Y

given X = x. Specifically, write I(·) to denote an indicator function and let Ĥn(y|x) =

∑n
i=1 wi(x)I(Yi ≤ y) serve as an estimator of H(y|x) ≡ P(Y ≤ y|X = x), the conditional

cdf of Y given X = x. For α ∈ (0, 1), let Q̂α(x) ≡ inf{y ∈ R : Ĥn(y|x) ≥ α} denote the

α-quantile of the estimated conditional distribution Y given X = x. Then, a QRF-based

100(1− α)% prediction interval for Y is given by [Q̂α/2(x), Q̂1−α/2(x)]. Under regularity

conditions and a few simplifying assumptions, Meinshausen (2006) showed that, for any

givenx, the absolute error of the QRF conditional cdf approximation converges uniformly

in probability to 0 as n → ∞. Furthermore, an analysis of five datasets in Meinshausen

(2006) shows average coverage rates for 95% QRF intervals ranging from 90.2% to 98.6%

in five-fold cross-validation analysis. We investigate the performance of QRF prediction

intervals relative to SC intervals and our proposed OOB intervals in Sections 4.5 and 4.6.

4.4.3 Confidence Intervals

Wager et al. (2014) use ideas from Efron (1992) and Efron (2014) to develop bias-

corrected versions of the Infinitesimal Jackknife and Jackknife-after-Bootstrap estimates of

Var[m̂n(x)], the variance of the random forest estimator of m(x) = E(Y|X = x). Be-

cause the jackknife-after-bootstrap estimator makes explicit use of OOB tree predictions,

there are similarities with our proposed procedure. Although Wager et al. (2014) primar-

ily focus on how well proposed estimators approximate Var[m̂n(x)], a footnote regarding

intervals displayed in Figure 1 of Wager et al. (2014) proposes a confidence interval of
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the form m̂n(x) ± zασ̂(x), where zα is the 1− α quantile of the standard normal distri-

bution and σ̂(x) is a standard error computed by taking the square root of the average

of jackknife and infinitesimal jackknife estimators of Var[m̂n(x)]. This interval could be

expected to provide coverage of E[m̂n(x)] with confidence level approximately equal to

100(1 − α)% under the assumption that m̂n(x) is approximately normal with variance

σ̂2(x).

Another approach for constructing confidence intervals from a procedure similar to

random forests is proposed in Mentch and Hooker (2016). Instead of aggregating over

trees built from full bootstrap samples of size n, Mentch and Hooker (2016) average over

trees built on random subsamples of the training dataset and demonstrate that the result-

ing estimator takes the form of an asymptotically normal incomplete U-statistic. Further-

more, Mentch and Hooker (2016) develop a consistent estimator for the variance of the

relevant limiting normal distribution that naturally leads to a confidence interval for the

mean of their estimator.

The intervals of Wager et al. (2014) and Mentch and Hooker (2016) are confidence in-

tervals for the expected value of estimators of E(Y|X = x). When the estimators they

consider are unbiased (or at least
√

n-consistent) for E(Y|X = x), their proposed inter-

vals serve as confidence intervals for E(Y|X = x). Because our focus is on prediction

intervals for Y (conditional mean plus random error) that are necessarily wider than con-

fidence intervals for E(Y|X = x), we do not consider these confidence intervals further

in the current study.

4.5 Simulation Study

In this section, we use simulated examples to illustrate the finite-sample performance

of our proposed OOB prediction intervals. We compare OOB, SC and QRF interval widths
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and their Type I through IV coverage rates introduced in Section 4.3. The R package con-

formalInference is used to construct split conformal prediction intervals, and the R package

quantregForest is used to build quantile regression forests.

We simulate data from an additive error model: Y = m(X) + ε, where the predictor

X = (X1, . . . , Xp)> with p = 10 and ε is the error term. The distribution of predictor vec-

tor X , the distribution of error term ε , the mean function m(·), and the training sample

size n may all affect the performance of prediction intervals. In our simulation study, a

factorial design is considered for these four factors:

• Mean functions : m(x) = x1 + x2 (linear), m(x) = 2 exp(−|x1| − |x2|) (nonlinear),

and m(x) = 2 exp(−|x1| − |x2|) + x1x2 (nonlinear with interaction).

• Distributions of errors: ε ∼ N(0, 1) (homoscedastic), ε ∼ t3/
√

3 (heavy-tailed), ε ∼

N
(

0, 1
2 +

1
2
|m(X)|

E|m(X)|

)
(heteroscedastic).

• Distributions of predictors: X ∼ N(0, Ip) (uncorrelated), and X ∼ N(0, Σp) (cor-

related), where Σp is an AR(1) covariance matrix with ρ = 0.6 and diagonal values

equal to 1.

• Training sample sizes: n = 200, 500, 1000, 2000, and 5000.

The full-factorial design results in 90 different simulation scenarios. For each of the 90

scenarios, the random forest tuning parameters are selected from mtry ∈ {1, . . . , 10} and

nodesize ∈ {1, . . . , 5} to minimize average cross-validated mean squared prediction error

over five-fold cross-validation for 10 randomly generated datasets. The selected tuning

parameters for any given scenario are then used for construction of all random forests and

intervals for each dataset simulated according to that scenario. Dataset-specific adaptive

tuning and performance for different choices of mtry and nodesize is studied in Section 4.6.

The number of trees is 2000 for all random forests built in the simulation study (Oshiro
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et al., 2012). Following Lei et al. (2018), we set the nominal level at 0.9 for all prediction

intervals constructed in this section.

4.5.1 Evaluating Type I and II coverage rates

To evaluate the Type I and II coverage rates, we simulate 200 datasets for each of our

90 simulation scenarios. Each dataset consists of training cases (n = 200, 500, 1000, 2000,

or 5000) and 500 test cases randomly and independently generated from the joint distribu-

tion of (X , Y). For each interval method and each simulated dataset, Type II coverage is

estimated by calculating the percentage of 500 test case response values contained in their

prediction intervals. Type I coverage for each simulation scenario and interval method is

estimated by averaging over the 200 Type II coverage estimates obtained from the 200

simulated datasets for each simulation scenario.

Figures 4.1 and 4.2 summarize the Type I and II coverage rate estimates for OOB,

SC and QRF intervals for all training sample sizes and data-generating models. Each

circle is the average of the 200 Type II coverage estimates summarized in a boxplot. This

average represents the empirical Type I coverage rate for any given scenario. Estimates

of the Type I coverage rates of OOB and SC prediction intervals are very close to 0.9 (the

nominal level). In contrast, QRF prediction intervals are more likely to over-cover or

under-cover target response in terms of Type I coverage. As the sample size n increases,

the OOB and SC Type II coverage rate estimates show decreased variation and become

more concentrated around 0.9. Additionally, the coverage rates of OOB and SC prediction

intervals are stable across the mean functions, predictor correlations, and measurement

error distributions in our simulation study.

Given the random forest for any simulated dataset, OOB interval width is the same

for all test cases. Similarly, the SC method produces intervals of constant width across
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test cases. On the other hand, the width of QRF intervals varies across test cases. Thus,

for each simulated dataset, we record one OOB interval width, one SC interval width,

and 500 QRF interval widths. To compare the interval widths of these three methods,

we average the 500 QRF interval widths for each simulated dataset. Boxplots summa-

rizing the distributions of interval widths are provided in Figure S.2 and Figure S.3. To

provide a clearer comparison of interval widths, we compute the ratio of the SC interval

width relative to the OOB interval width and the ratio of the average QRF interval width

to the OOB interval width for each simulated dataset. Boxplots of the log2 transforma-

tion of the ratios are presented in Figure 4.3 and Figure 4.4. Figure 4.4 and Figure 4.6

show that the interval widths shrink as sample size increases. Figure 4.3 and Figure 4.4

indicate that OOB prediction intervals tend to be narrower than intervals produced by

competing methods. The only exceptions occur when QRF intervals have coverage rates

substantially below the nominal level.

4.5.2 Evaluating Type III and IV coverage rates

The simulation settings for evaluating the Type III and IV coverage probabilities are

the same as in Section 4.5.1 except that no test cases are simulated. Instead, for each sim-

ulated training dataset, OOB, SC and QRF prediction intervals are generated for X = x,

where x is a specified 10-dimensional predictor vector. Using the known conditional dis-

tribution of Y given X = x for the given simulation scenario, we compute the exact

Type IV coverage probability for each interval. The Type III coverage rate for any interval

method and simulation scenario is then estimated by averaging over the 200 Type IV cov-

erage rate estimates computed from the 200 training datasets simulated for that scenario.

Figures 4.7 – 4.10 show the boxplots of Type IV coverage rate estimates, i.e., estimates

of P[Y ∈ Iα(X , C)|C,X = x] for OOB, SC and QRF prediction intervals and x = 0 or
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Figure 4.1: Boxplots of P[Y ∈ Iα(X , C)|C], the Type II coverage rate estimates for out-
of-bag (OOB) prediction intervals, split conformal (SC) prediction intervals, and quantile
regression forest (QRF) intervals when X ∼ N(0, Σp) (correlated predictors). Each cir-
cle is the average of the 200 Type II coverage estimates summarized in a boxplot, and
represents an estimate of Type I coverage rate, i.e., P[Y ∈ Iα(X , C)].
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Figure 4.2: Boxplots of P[Y ∈ Iα(X , C)|C], the Type II coverage rate estimates for out-
of-bag (OOB) prediction intervals, split conformal (SC) prediction intervals, and quantile
regression forest (QRF) intervals when X ∼ N(0, Ip) (uncorrelated predictors). Each
circle is the average of the 200 Type II coverage estimates summarized in a boxplot, and
represents an estimate of Type I coverage rate, i.e., P[Y ∈ Iα(X , C)].
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Figure 4.3: Boxplots of the log2 ratios of split conformal (SC) interval widths to out-of-
bag (OOB) interval widths, and the log2 ratios of quantile regression forest (QRF) interval
width averages to out-of-bag (OOB) interval widths whenX ∼ N(0, Σp) (correlated pre-
dictors).
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Figure 4.4: Boxplots of the log2 ratios of split conformal (SC) interval widths to out-of-
bag interval (OOB) widths, and the log2 ratios of quantile regression forest (QRF) interval
width averages to out-of-bag interval (OOB) widths when X ∼ N(0, Ip) (uncorrelated
predictors).
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Figure 4.5: Boxplots of interval widths for out-of-bag (OOB) prediction intervals and split
conformal (SC) prediction intervals, and the average interval widths of quantile regres-
sion forest (QRF) intervals whenX ∼ N(0, Σp) (correlated predictors).
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Figure 4.6: Boxplots of the log2 ratios of split conformal (SC) interval widths to out-of-
bag (OOB) interval widths, and the log2 ratios of quantile regression forest (QRF) interval
width averages to out-of-bag (OOB) interval widths when X ∼ N(0, Ip) (uncorrelated
predictors).
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1 (10-dimensional vectors of zeros and ones, respectively). Each circle is the average of

the 200 Type IV coverage estimates summarized in a boxplot. This average represents the

empirical Type III coverage rate for any given scenario. As in the Type I and II coverage

results presented in Section 4.5.1, we see that OOB and SC intervals perform similarly

across all scenarios with respect to Type III and IV coverage. In contrast, QRF intervals

tend to be more variable within scenarios than OOB and SC intervals in terms of Type IV

coverage and display Type III coverage values that often differ from the corresponding

values for OOB and SC intervals. QRF intervals clearly perform better for some scenarios

(Linear×Heteroscedastic scenarios, for example) and worse for others (e.g., seven of the

nine panels in Figure 4.7).

Aside from the size of the training dataset n, major factors that affect finite-sample

Type III and IV coverage include the shape of the mean function m(·) in a neighbor-

hood of x and Var(ε|X = x) relative to EX{Var(ε|X)} when error variance is het-

eroscedastic. To understand the impact of these factors, consider simulation scenarios

involving the nonlinear mean function m(x) = 2 exp(−|x1| − |x2|). This nonlinear func-

tion achieves a global maximum at x = 0. Because P{m(X) < m(0)} = 1, each training

case has a conditional mean response strictly less than m(0) with probability one (i.e.,

PXi{E(Yi|Xi) < m(0)} = 1 for all i = 1, . . . , n). Because a random forest prediction is

simply a weighted average of training responses (as discussed in Section 4.2.2), the ran-

dom forest estimator of m(0) has expectation less than m(0). This bias at x = 0 leads

to larger prediction errors at x = 0 than for other points in the predictor domain and

under-coverage for OOB, SC and QRF intervals visible in the middle row of Figure 4.7.

The under-coverage problem at x = 0 in the nonlinear case is exacerbated for OOB

and SC intervals for the heteroscedastic case. The OOB and SC intervals rely on a sin-

gle distribution of prediction errors estimated by combining information from prediction

errors made throughout the training dataset rather than the prediction errors made at
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any specified x vector. Thus, all else equal, an OOB or SC prediction interval will tend

to over-cover response values at a value x for which the error variance is relatively low

and under-cover response values at a value x for which the error variance is relatively

high. For the Nonlinear×Heteroscedastic case with x = 0, Var(ε|X = 0) is more than

twice EX{Var(ε|X)}, the mean error variance over the predictor space. Thus, the severe

under-coverage of OOB and SC intervals in the second row and third column of Figure 4.7

is as expected due to both underestimation of the mean function and relatively large error

variance at x = 0. Although QRF intervals suffer from the same random forest bias prob-

lem that plagues OOB and SC intervals, the adaptive width of QRF intervals typically

provides improved Type III and IV coverage results for QRF intervals relative to OOB

and SC intervals in heteroscedastic scenarios.

For prediction at x = 1, the second row of Figure 4.9 shows improved performance

for all intervals relative to the x = 0 case. Random forest bias at x = 1 is relatively

minimal because the average value of m(x) for x near 1 is relatively close to m(1). This

leads to Type III and IV coverages near the nominal 0.90 level for the homoscedastic and

heavy-tailed scenarios. In Figure 4.9, over-coverage for OOB and SC intervals results for

the Nonlinear×Heteroscedastic case because the error variance at x = 1 is less than 75% of

the mean error variance EX{Var(ε|X)}. The Type III and IV coverage results for OOB

intervals presented in Figures 4.7 – 4.10 are as expected when considering the shape of

the mean function near x and the value of Var(ε|X = x) relative to EX{Var(ε|X)} in

each scenario.

In response to a referee’s comment, we have generated Figures 4.11 and 4.12 that eval-

uate Type III and IV coverage at x = x3 ≡ (3,−3, 3, . . . , 3)′. Whether predictor variables

are correlated or uncorrelated, the multivariate normal distribution of X in our simula-

tion study assigns very low probability to neighborhoods containing x3. Thus, most sim-

ulated training datasets will contain no observations in close proximity to x3. Nonethe-
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less, a random forest predictor will find “nearest neighbors” in the training dataset as

those with the highest weights in (4.1). The resulting extrapolation may or may not work

well, depending on the true mean function m(·). Figures 4.11 and 4.12 show that OOB

and SC intervals have highly variable Type IV coverage and Type III coverage near (but

often below) the nominal level for linear and nonlinear scenarios. For the scenarios in-

volving the nonlinear mean function with interaction, the Type III and IV coverage levels

for OOB and SC intervals are estimated to be zero or near zero. This is not surprising con-

sidering that m(X) tends to be much greater than m(x3) with probability near one when

m(x) = 2 exp(−|x1| − |x2|) + x1x2. Thus, regardless of the training observations that re-

ceive the greatest weight in (4.1), the random forest prediction is likely to be substantially

greater than m(x3) so that large prediction errors are likely. QRF intervals are wide and

over-cover for our linear and nonlinear scenarios and show severe under-coverage for the

nonlinear scenarios with interaction. None of the prediction interval approaches we have

studied can be recommended for prediction in a region of the predictor space where no

training data are available, but we know of no approach that can be generally trusted for

such extrapolation.

4.6 Data Analysis

In this section, we compare the performance of OOB, SC and QRF prediction intervals

on 60 actual datasets, summarized in Table 4.1. The majority of the datasets (40 out of

60) were analyzed by Chipman et al. (2010). The other 20 datasets come from the UC

Irvine Machine Learning Repository website. These datasets span various application

areas, including biological science, physical science, social science, engineering, and busi-

ness. Sample sizes range from 96 to 45730, and the number of predictors ranges from 3 to

100. Prior to analysis, we standardize the response variable for each dataset to make the
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Figure 4.7: Boxplots of P[Y ∈ Iα(X , C)|C,X = 0], the Type IV coverage rate estimates
for out-of-bag (OOB) prediction intervals, split conformal (SC) prediction intervals, and
quantile regression forest (QRF) intervals when X ∼ N(0, Σp) (correlated predictors).
Each circle is the average of the 200 Type IV coverage estimates summarized in a boxplot,
and represents an estimate of Type III coverage rate, i.e., P[Y ∈ Iα(X , C)|X = 0].
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Figure 4.8: Boxplots of P[Y ∈ Iα(X , C)|C,X = 0], the Type IV coverage rate estimates
for out-of-bag (OOB) prediction intervals, split conformal (SC) prediction intervals, and
quantile regression forest (QRF) intervals when X ∼ N(0, Ip) (uncorrelated predictors).
Each circle is the average of the 200 Type IV coverage estimates summarized in a boxplot,
and represents an estimate of Type III coverage rate, i.e., P[Y ∈ Iα(X , C)|X = 0].
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Figure 4.9: Boxplots of P[Y ∈ Iα(X , C)|C,X = 1], the Type IV coverage rate estimates
for out-of-bag (OOB) prediction intervals, split conformal (SC) prediction intervals, and
quantile regression forest (QRF) intervals when X ∼ N(0, Σp) (correlated predictors).
Each circle is the average of the 200 Type IV coverage estimates summarized in a boxplot,
and represents an estimate of Type III coverage rate, i.e., P[Y ∈ Iα(X , C)|X = 1].
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Figure 4.10: Boxplots of P[Y ∈ Iα(X , C)|C,X = 1], the Type IV coverage rate estimates
for out-of-bag (OOB) prediction intervals, split conformal (SC) prediction intervals, and
quantile regression forest (QRF) intervals when X ∼ N(0, Ip) (uncorrelated predictors).
Each circle is the average of the 200 Type IV coverage estimates summarized in a boxplot,
and represents an estimate of Type III coverage rate, i.e., P[Y ∈ Iα(X , C)|X = 1].
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Figure 4.11: Boxplots of P[Y ∈ Iα(X , C)|C,X = (3,−3, 3, · · · , 3)′], the Type IV coverage
rate estimates for out-of-bag (OOB) prediction intervals, split conformal (SC) prediction
intervals, and quantile regression forest (QRF) intervals whenX ∼ N(0, Σp) (correlated).
Each circle is the average of the 200 Type IV coverage estimates summarized in a box-
plot, and represents an estimate of Type III coverage rate, i.e., P[Y ∈ Iα(X , C)|X =
(3,−3, 3, · · · , 3)′].
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Figure 4.12: Boxplots of P[Y ∈ Iα(X , C)|C,X = (3,−3, 3, · · · , 3)′], the Type IV coverage
rate estimates for out-of-bag (OOB) prediction intervals, split conformal (SC) prediction
intervals, and quantile regression forest (QRF) intervals when X ∼ N(0, Ip) (uncorre-
lated). Each circle is the average of the 200 Type IV coverage estimates summarized in a
boxplot, and represents an estimate of Type III coverage rate, i.e., P[Y ∈ Iα(X , C)|X =
(3,−3, 3, · · · , 3)′].
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interval widths for different datasets more comparable. Cases with one or more missing

values are omitted. The number of trees is 2000 for all random forests built in this section,

and the nominal coverage rate is set at 0.9.

Because the repeated measures of the response variable given a fixed predictor vector

X = x are not common in these datasets, Type III and IV coverage probabilities are dif-

ficult to evaluate. Thus, only Type I and II coverage probabilities are considered in this

section. Our approach to empirically assess Type I and II coverage probabilities is through

five-fold cross validation. For each run of five-fold cross validation, we randomly parti-

tion the whole dataset into five non-overlapping parts. Four parts are combined to form a

training set that is used to compute prediction intervals for the response values of cases in

the fifth part. Then we calculate the percentages of response values in the fifth part con-

tained by their intervals to approximate Type II coverage rate. All (5
4) training/test sets

are analyzed for each partition, and a total of 20 random partitions are analyzed for each

dataset. For each dataset and method, this process yields 100 empirical Type II coverage

rates, which can be averaged to obtain an empirical Type I coverage rate.

The empirical coverage rates (Type I: circles, Type II: boxplots) for all three methods

for all 60 datasets are presented in Figure 4.16 – 4.18. Figure 4.13 shows a summary of all

the Type II coverage rate estimates with datasets on the horizontal axis in ascending order

by the average value of the OOB, SC and QRF Type I coverage rate estimates. Relative

interval widths are summarized in Figure 4.14, where we present the log2 ratio of the

average width of SC intervals to the average width of OOB intervals, and the average

width of QRF intervals to the average width of OOB intervals. The order of datasets in

Figure 4.14 is the same as the order in Figure 4.13.

The findings from real data analysis are consistent with the conclusions made in the

simulation study. Both the OOB prediction intervals and the SC prediction intervals have

good Type I coverage rates centered at 0.9, but the Type I coverage rate of QRF intervals
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Table 4.1: Name, n = total number of observations (excluding observations with missing
values), and p = number of predictor variables for 60 datasets.

No. Name n p No. Name n p
1 Abalone 4177 8 31 Facebook Metrics 495 17
2 Air Quality 9357 12 32 Fame 1318 22
3 Airfoil Self-Noise 1503 5 33 Fat 252 14
4 Ais 202 12 34 Fishery 6806 14
5 Alcohol 2462 18 35 Hatco 100 13
6 Amenity 3044 21 36 Hydrodynamics 308 6
7 Attend 838 9 37 Insur 2182 6
8 Auto MPG 392 7 38 Istanbul Stock 536 6
9 Automobile 159 18 39 Laheart 200 16
10 Baseball 263 20 40 Medicare 4406 21
11 Basketball 96 4 41 Mumps 1523 3
12 Beijing PM2.5 41757 11 42 Mussels 201 4
13 Boston 506 13 43 Naval Propulsion Plants 11934 16
14 Budget 1729 10 44 Optical Network 630 9
15 Cane 3775 9 45 Ozone 330 8
16 Cardio 375 9 46 Parkinsons 5875 21
17 College 694 24 47 PM2.5 of Five Cities 21436 9
18 Community Crime 1994 100 48 Price 159 15
19 Computer Hardware 209 6 49 Protein Structure 45730 9
20 Concrete Strength 1030 8 50 Rate 144 9
21 Concrete Slump Test 103 9 51 Rice 171 15
22 Cps 534 10 52 Scenic 113 10
23 CPU 209 7 53 Servo 167 4
24 Cycle Power Plant 9568 4 54 SML2010 4137 21
25 Deer 654 13 55 Smsa 141 10
26 Diabetes 375 15 56 Strike 625 5
27 Diamond 308 4 57 Tecator 215 10
28 Edu 1400 5 58 Tree 100 8
29 Energy Efficiency 768 8 59 Triazine 186 28
30 Enroll 258 6 60 Wage 3380 13
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Figure 4.13: Boxplots of Type II coverage rates for out-of-bag (OOB) prediction intervals,
split conformal (SC) prediction intervals, and quantile regression forest (QRF) intervals
for 60 datasets. The ordering of the datasets on the horizontal axis is the same for all
three panels and is determined by the average Type I coverage rates of OOB, SC and QRF
prediction intervals.



157

−1

0

1

2

Dataset

lo
g 2

(I
nt

er
va

l w
id

th
 r

at
io

)

log2(SC_width/OOB_width) log2(QRF_width/OOB_width)

Figure 4.14: A plot of the log2 ratios of split conformal (SC) interval width averages to
out-of-bag (OOB) interval width averages, and the log2 ratios of quantile regression for-
est (QRF) interval width averages to out-of-bag (OOB) interval width averages for 60
datasets.

deviate substantially from 0.9 for many datasets. Furthermore, OOB prediction intervals

are narrower than SC prediction intervals for almost all 60 datasets, and the widths of

OOB prediction intervals tend to be similar to or narrower than QRF interval widths. The

few exceptions occur for datasets with QRF coverage rate estimates well below 0.9.

For the data analysis results presented so far in this section, the mtry and nodesize

tuning parameters of random forests are selected for each dataset by five-fold cross val-

idation to minimize cross-validated mean squared prediction error over (mtry, nodesize)

∈
{⌈

1
2

⌊ p
3

⌋⌉
,
⌊ p

3

⌋
, 2
⌊ p

3

⌋}
× {1, 5} = {2, 3, 6} × {1, 5}, following the advice of Breiman

as recounted by Liaw and Wiener (2002). The tuning parameters are then fixed at the se-

lected values during the subsequent OOB, SC and QRF interval evaluation (which also in-
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Figure 4.15: The effect of tuning parameters on prediction intervals for the example of
Concrete Strength dataset: (a) boxplots of Type II coverage rates for out-of-bag (OOB)
prediction intervals, split conformal (SC) prediction intervals, and quantile regression
forest (QRF) intervals under different combinations of mtry and nodesize; (b) boxplots of
interval widths for out-of-bag (OOB) prediction intervals, split conformal (SC) prediction
intervals, and quantile regression forest (QRF) intervals under different combinations of
mtry and nodesize.
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volves five-fold cross-validation, although five-fold cross-validation is repeated 20 times

for coverage probability estimation). To show how the three prediction intervals adapt to

other choices of the random forest tuning parameters, we evaluate the performance of the

prediction intervals on one real data example, the Concrete Strength dataset from UCI, for

each combination of nodesize ∈ {1, 5} and mtry ∈ {2, 4, 6, 8}. The results are illustrated

in Figure 4.15. As in our other analyses, OOB and SC prediction intervals tend to cover

close to 90% of the test case response values on average, and OOB intervals are narrower

than both SC and QRF intervals regardless of the mtry and nodesize values. The QRF in-

tervals have estimated Type I coverage rates sometimes above and sometimes below the

nominal level depending on the tuning parameter values. Both the OOB and SC intervals

show stable performance across tuning parameter values, while QRF intervals are sensi-

tive to the choice of tuning parameters in terms of coverage and width. Overall, the OOB

intervals perform uniformly best across the investigated tuning parameter values for this

dataset.

4.7 Concluding Remarks

We propose OOB prediction intervals as a straightforward technique for construct-

ing prediction intervals from a single random forest and its by-products. We have pro-

vided theory that guarantees asymptotic coverage (of various types) for OOB intervals

under regularity conditions. Our simulation analysis in Section 4.5 and our analysis of

60 datasets in Section 4.6 provide evidence for reliability and efficiency of OOB intervals

across a wide range of sample sizes and scenarios that do not necessarily conform to the

assumptions required for our theorems. Thus, the performance record for OOB inter-

vals established in this study indicates that OOB prediction intervals can be used with

confidence for a wide array of practical problems.
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Figure 4.16: Boxplots of Type II coverage rate estimates for out-of-bag (OOB) prediction
intervals, split conformal (SC) prediction intervals, and quantile regression forest (QRF)
intervals for 20 datasets: Abalone, Air Quality, Airfoil Self-Noise, Ais, Alcohol, Amenity, At-
tend, Auto MPG, Automobile, Baseball, Basketball, Beijing PM2.5, Boston, Budget, Cane, Cardio,
College, Communities Crime, Computer Hardware, and Concrete Strength. The circles repre-
sent empirical Type I coverage rates.
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Figure 4.17: Boxplots of Type II coverage rate estimates for out-of-bag (OOB) prediction
intervals, split conformal (SC) prediction intervals, and quantile regression forest (QRF)
intervals for 20 datasets: Concrete Slump Test, Cps, CPU, Cycle Power Plant, Deer, Diabetes,
Diamond, Edu, Energy Efficiency, Enroll, Facebook Metrics, Fame, Fat, Fishery, Hatco, Hydrody-
namics, Insur, Istanbul Stock, Laheart, and Medicare. The circles represent empirical Type I
coverage rates.
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Figure 4.18: Boxplots of Type II coverage rate estimates for out-of-bag (OOB) prediction
intervals, split conformal (SC) prediction intervals, and quantile regression forest (QRF)
intervals for 20 datasets: Mumps, Mussels, Naval Propulsion Plants, Optical Network, Ozone,
Parkinsons, PM2.5 of Five Cities, Price, Protein Structure, Rate, Rice, Scenic, Servo, SML2010,
Smsa, Strike, Tecator, Tree, Triazine, and Wage. The circles represent empirical Type I cover-
age rates.
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Our numerical results show that QRF prediction intervals tend to have Type I and

Type II coverage rates that deviate from the nominal level, sometimes over-covering and

sometimes under-covering target response values, more often than the other methods we

studied. Furthermore, when QRF intervals do cover at the nominal Type I or Type II rate,

they tend to be wider than OOB intervals. In most of our simulation scenarios involving

heteroscedastic errors, QRF prediction intervals outperformed OOB and SC intervals with

respect to Type III and Type IV coverage. This is not surprising because QRF intervals

are designed to provide Type III coverage, while SC intervals are only guaranteed to

provide marginal (Type I) coverage. Furthermore, the theorems presented in this study

– that guarantee asymptotically correct coverage rates for OOB intervals – rely on an

assumption of homoscedasticity. Nonetheless, OOB and SC intervals outperform QRF

intervals with respect to Type III and IV coverage in some of our simulation scenarios

involving heteroscedasticity (and in most scenarios involving homoscedasticity).

To assess the validity of the homoscedasticity assumption for any particular dataset,

we suggest examining a residual plot of OOB prediction errors against estimated mean

values. Other variations on residual plots – e.g., plots of OOB prediction errors vs. im-

portant predictors, plots of absolute OOB prediction errors vs. estimated mean values,

etc. – may also be used to identify discrepancies between assumptions and data. As in

traditional multivariate linear regression, a transformation of the response variable may

be useful for variance stabilization. In some cases, such transformations may be unavail-

able or undesirable. In these situations, simple modifications to our approach as in Lei

et al. (2018) can be made to account for nonconstant error variance. More specifically, Lei

et al. (2018) provide an extension to SC inference, known as Locally Weighted Conformal

Inference, that yields prediction intervals with good empirical coverage properties when

the error variance is a function of the predictor vector. A completely analogous technique



164

can be used to improve the performance of OOB intervals when error variance changes

across the predictor space.

Our comparison of OOB and SC inference shows that these methods produce intervals

that behave similarly with respect to coverage probability. However, OOB intervals tend

to be narrower, and thus more informative, than SC intervals. The SC intervals come with

a guarantee of finite-sample Type I coverage probability at or above any specified level

of confidence under very general conditions. Although this marginal coverage guaran-

tee is very appealing, our numerical results in simulations and in the analysis of 60 real

datasets provide compelling evidence in favor of OOB intervals. We recommend that an

OOB interval be used alongside a random forest point prediction to provide a range of

plausible response values for those drawing conclusions from data.
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4.9 Appendix: Proofs of Main Theorems

In this section, we provide proofs of the distributional results, regarding the coverage

properties of out-of-bag prediction intervals.
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4.9.1 Proofs of Theorem 1 and Corollary 1

Corollary 1 follows from the convergence of the conditional probability in Theorem 1

combined with the boundedness of the conditional probability by 1; consequently, the

expected value of the conditional probability in Theorem 1 (or, equivalently, the uncondi-

tional probability in Corollary 1) converges to 1− α.

For the proof of Theorem 1, we require some notation as well as statements of Lem-

mas 1-2 to follow; proofs of these technical lemmas appear after that of Theorem 1.

Let (X , Y), (X1, Y1), . . . , (Xn, Yn) be iid random vectors where Y − m(X) has continu-

ous cdf F under condition (c.3), i.e., F(t) = P{Y − m(X) ≤ t}, t ∈ R. Based on

Cn ≡ {(Xj, Yj)}n
j=1, let Ŷ ≡ m̂n(X) denote the RF estimator of m(X) and, for i = 1, . . . , n,

let Ŷ(i) = m̂n,(i)(Xi) denote the associated oob estimator of m(Xi) (i.e., based on the sub-

forest RF(i) involving observations Cn \ {(Xi, Yi)}), where condition (c.4) entails

|m̂n(X)−m(X)| P→ 0 and |m̂n,(1)(X1)−m(X1)|
P→ 0 as n→ ∞. (4.8)

From the prediction differences Dn,i ≡ Di ≡ Yi − m̂n,(i)(Xi), i = 1, . . . , n, let D[n,γ] ≡

inf{t ∈ R : F̂n(t) ≥ γ} denote the γ ∈ (0, 1) empirical quantile based on the empirical

distribution F̂n(t) = 1
n ∑n

i=1 I(Dn,i ≤ t), t ∈ R, as an estimator of F, where I(·) denotes

the indicator function above.

Lemma 1. Under conditions (c.1)-(c.4), as n→ ∞,

sup
t∈R

|F̂n(t)− F(t)| P→ 0

and F(D[n,γ1]
)− F(D[n,γ2])

P→ 1− α for any γ1, γ2, α ∈ (0, 1) with γ1 − γ2 = 1− α.

Lemma 2. Under conditions (c.1)-(c.4), as n→ ∞,

∆n ≡ sup
t∈R

|P∗ {Y− m̂n(X) < t} − F(t)| = sup
t∈R

|P∗ {Y− m̂n(X) ≤ t} − F(t)| P→ 0,

where P∗(·) ≡ P(·|Cn) denotes conditional probability given Cn = {(Xj, Yj)}n
j=1.
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Next, for α ∈ (0, 1), writing P∗,n ≡ P∗(D[n,α/2] ≤ Y − m̂n(X) ≤ D[n,1−α/2]) to denote

the target conditional coverage probability given Cn, we have

P∗,n = P∗(Y− m̂n(X) ≤ D[n,1−α/2])− P∗(Y− m̂n(X) < D[n,α/2])

= F(D[n,1−α/2])− F(D[n,α/2]) + Rn,

for a remainder Rn defined by subtraction. Then, P∗,n
P→ (1− α) follows as n → ∞ in

Theorem 1 by using Lemma 1 along with the bound on the remainder |Rn| ≤ 2∆n
P→ 0

under Lemma 2. �

Proof of Lemma 1. The second claim of Lemma 1 follows from the first using that F is

continuous. To see this, we consider showing F(D[n,γ])
P→ γ for a fixed value γ ∈ (0, 1).

For a ≡ inf{t ∈ R : F(t) ≥ γ} and b ≡ sup{t ∈ R : F(t) ≤ γ}, note a ≤ b and that

F(a− ε) < γ < F(b + ε) holds for any ε > 0. From this, the first Lemma 1 claim yields

that P(F̂n(a− ε) < γ < F̂n(b + ε)) → 1 as n → ∞ for any given ε > 0. The event F̂n(a−

ε) < γ < F̂n(b + ε) implies that D[n,γ] ∈ [a− ε, b + ε] so that |F(D[n,γ])− γ| ≤ Λ(ε) ≡

F(b + ε) − F(a − ε) further holds, because F is non-decreasing with F(a) = F(b) = γ.

Now F(D[n,γ])
P→ γ follows by limn→∞ P{|F(D[n,γ]) − γ| ≤ Λ(ε)} = 1 for each ε > 0

combined with limε↓0 Λ(ε) = 0.

To establish the first claim of Lemma 1, it suffices, by Poyla’s theorem and the con-

tinuity of F, to show that F̂n(t)
P→ F(t) for any fixed t ∈ R. Note that, using m(X1) −

m̂n,(1)(X1)
d
= m(X2)− m̂n,(2)(X2)

P→ 0 in (4.8) along with Slutsky’s theorem, we have Dn,1

Dn,2

 =

 Y1 −m(X1)

Y2 −m(X2)

+

 m(X1)− m̂n,(1)(X1)

m(X2)− m̂n,(2)(X2)

 d→

 Y1 −m(X1)

Y2 −m(X2)

 (4.9)

as n→ ∞, where Y1 −m(X1) and Y2 −m(X2) are again iid with continuous cdf F.
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By the iid properties of the random vectors in Cn = {(Xj, Yj)}n
j=1 along with (4.9), we

then have

EF̂n(t) = P(Dn,1 ≤ t)→ F(t) as n→ ∞

for any given t ∈ R, as well as

Var[F̂n(t)] =
1
n

Var[I(Dn,1 ≤ t)] +
n(n− 1)

n2 Cov [I(Dn,1 ≤ t), I(Dn,2 ≤ t)]

≤ 1
n
+ P(Dn,1 ≤ t, Dn,2 ≤ t)− [P(Dn,1 ≤ t)]2

→ [F(t)]2 − [F(t)]2 = 0

as n→ ∞. This shows F̂n(t)
P→ F(t) and completes the proof of Lemma 1. �

Proof of Lemma 2. The equality of the suprema defining ∆n follows from one-sided limit

behavior of cdfs (e.g., limt↑s P∗(Y− m̂n(X) ≤ t) = P∗(Y− m̂n(X) < s) and limt↓s P∗(Y−

m̂n(X) < t) = P∗(Y − m̂n(X) ≤ s)) along with F(t) = P(Y − m(X) < t), t ∈ R, by

continuity. Writing Y − m̂n(X) = [Y − m(X)] + [m(X) − m̂n(X)], the conditional cdf

of [Y − m(X)] given Cn is F (i.e., the continuous unconditional cdf), as [Y − m(X)] is

independent of Cn. Hence, to establish Lemma 2, it suffices to prove that the conditional

distribution of [m(X)− m̂n(X)] given Cn converges to a distribution that is degenerate

at 0 (in probability). For any integer ` ≥ 1, P∗(|m(X)− m̂n(X)| > `−1)
P→ 0 follows as

n→ ∞ using that

EP∗(|m(X)− m̂n(X)| > `−1) = P(|m(X)− m̂n(X)| > `−1)→ 0

by (4.8). This implies the desired probabilistic convergence and completes the proof of

Lemma 2. [That is, if P∗(|m(X)− m̂n(X)| > `−1)
P→ 0 for any integer ` ≥ 1, then for any

subsequence {nj} ⊂ {n}, one may extract a further subsequence {nk} ⊂ {nj} such that

the set of sample points

A ≡ {ω ∈ Ω : P∗(|m(X)− m̂nk(X)| > `−1)(ω)→ 0 as nk → ∞ for all ` ≥ 1}
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has P(A) = 1 on some probability space (Ω,F , P); consequently, along the subsequence

{nk} and pointwise on A, the distribution of |m(X)− m̂nk(X)| under P∗ converges weakly

to a degenerate distribution at 0 (i.e., with probability 1). As the subsequence {nj} ⊂ {n}

was arbitrary, the weak convergence of the distribution of |m(X) − m̂n(X)| under P∗

must hold in probability.] �

4.9.2 Proofs of Theorem 2 and Corollary 2

By re-defining the conditional probability P∗ in the proof of Theorem 1 to denote con-

ditional probability P∗(·) ≡ P(·|Cn,X = x) given both Cn = {(Xj, Yj)}n
j=1 and X = x

(rather than given Cn alone), the same proof for Theorem 1 then applies to show Theo-

rem 2. This is because Lemma 1 remains valid along with a version of Lemma 2 with

respect to the re-defined conditional probability P∗; namely, under Theorem 2 assump-

tions, the corresponding Lemma 2 result becomes

∆n ≡ sup
t∈R

|P∗ {Y− m̂n(x) < t} − F(t)| = sup
t∈R

|P∗ {Y− m̂n(x) ≤ t} − F(t)| P→ 0,

as n → ∞, under the conditional probability P∗(·) ≡ P(·|Cn,X = x). This recasting

of Lemma 2 can be justified using the same essential argument given in the previous

proof of Lemma 2 with two modifications: we use that the conditional distribution of

Y−m(X) ≡ Y−m(x) given Cn and X = x has cdf F (because e = Y−m(X), with cdf

F, is independent of X by condition (c.2) and independent of Cn by assumption) and we

apply m̂n(x)
P→ m(x) in place of m̂n(X)

P→ m(X). Theorem 2 then yields Corollary 2 in

the same manner as Corollary 1 follows from Theorem 1. �
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CHAPTER 5. GENERAL CONCLUSION

In this dissertation, we develop statistical methods and theory for analyzing spatially

dependent functional data, present an application and case study using functional mod-

eling and robust shape-constrained methods to estimate growth curves and derivatives

from crowsourced image-based data, and propose a new approach to constructing pre-

diction intervals with random forests. A brief summary and potential directions of future

work for all three projects are discussed below.

5.1 Summary

In Chapter 2, we propose a new model structure and estimation framework for the

analysis of spatially dependent functional data. We adopt a three-dimensional tensor

product spline approach to estimating the spatio-temporal covariance function. Our

three-dimensional spline covariance estimator yields important byproducts, including

nonparametric estimators of the principal components and the spatial covariance func-

tions for the FPC scores. Under this model, we develop a new method for functional

Kriging, where the goal is to predict the random function at a new location, and the pro-

posed method yields much smaller prediction error than classical methods, as shown by

simulation study and data analysis. The assumed coregionalization covariance structure

is more flexible than the commonly used separable structure (Li et al., 2007; Aston et al.,

2017). We also derive the asymptotic convergence rates for the proposed estimators un-

der a unified framework that can accommodate both sparse and dense functional data,

and the number of observations per curve is allowed to be of any rate relative to the num-
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ber of functions. We also stress the importance of modeling the functional nugget effects,

which model the local characteristics that are not dependent on neighbors. As shown in

our simulation studies, ignoring the functional nugget effects can potentially cause large

biases in the FPCA estimators. This research was primarily motivated by two real-estate

datasets on London housing prices and Zillow price-rent ratio. Our data analysis pro-

vides new insights on the dependence structure and modes of variation in these data,

and also demonstrates how the proposed estimators can be used for spatial prediction.

In Chapter 3, we present a novel application of functional data modeling to maize

growth data derived from crowdsourcing image analysis and high-throughput pheno-

typing technology. Plant height measurements are modeled as discrete observations of

latent smooth growth curves contaminated with MTurk worker random effects and mea-

surement errors. We allow the mean function of the growth curve and its first derivative

to depend on replicates and irrigation conditions, and model the phenotypic variation

between genotypes and genotype-by-environment interactions by functional random ef-

fects. We estimate mean functions and covariance functions of the functional random

effects by a fast penalized tensor product spline approach. In the estimation procedure,

a Huber loss rather than a quadratic loss is utilized to resist the effect of outliers, and

a shape-constraint is imposed on the estimated mean functions. We then perform func-

tional principal component analysis, and estimate the principal component scores by best

linear unbiased prediction. The latent growth curves and their first derivatives are re-

covered by using the estimated mean functions, FPCs, and FPC scores. The results of

simulation studies indicate that our robust estimation approach leads to smaller estima-

tion errors of growth curves and derivatives than a naive approach.

In Chapter 4, we propose OOB prediction intervals as a straightforward but favor-

able technique for constructing prediction intervals from a single random forest and its

by-products. Our numerical results show that intervals constructed with our proposed
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method tend to be narrower than those of competing methods while still maintaining

marginal coverage rates approximately equal to nominal levels. We have also provided

theory that guarantees asymptotic coverage (of various types) for OOB intervals under

regularity conditions. Our extensive simulation studies in Section 4.5 and analysis of 60

real datasets in Section 4.6 provide evidence for reliability and efficiency of OOB pre-

diction intervals across a wide range of scenarios that do not necessarily conform to the

assumptions required for our theorems. Thus, the performance record for OOB inter-

vals established in this study indicates that OOB prediction intervals can be used with

confidence for a wide array of practical problems.

5.2 Future Work

The validity of theorectic properties of proposed estimators in Chapter 2 relies on

several crucial assumptions: coregionnnalization covariance structure, stationary and

isotropic spatial dependence. As potential future work, we will develop hypothesis tests

for these assumptions. Additionally, we will extend the current framework to functional

data observed on a spatial lattice.

There are some practical issues that need to be further investigated in Chapter 3.

For instance, we define a drought-sensitivity index (DSI) in Section 3.3, but this defini-

tion assumes equal weight for different stages during maize growth development. For

the interest of biological interpretation, we will further explore various versions of our

DSI by leveraging different weighting strategies and incoporating weather information.

Moreover, another robust estimation approach known as S-estimation has become popu-

lar recently and developed in the context of nonparametric regression and functional data

analysis (Tharmaratnam et al., 2010; Boente and Salibian-Barrera, 2015). We will empiri-
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cally assess the performance of the S-estimation approach and compare it with the M-type

method that we apply to maize growth data.

Our study on random forest prediction intervals in Chapter 4 also opens up many

new research problems. We will continue our research from the following three aspects:

extrapolation, heteroscedasticity, and bias correction. First, as shown in Section 4.5.2, ran-

dom forests, as well as many other “black-box” machine learning algorithms, may suffer

from extrapolation problems by producing untrusworthy predictions in a region of the

predictor space where no training data are available (Ribeiro et al., 2016; Zhang et al.,

2017). We will further develop an effective method that combines data depth (Liu, 2006)

and supervised dimension reduction (Chao et al., 2019) to diagnose cases in the test data

that have high extrapolation risk (Hooker, 2004; Munson and Kegelmeyer, 2013). Sec-

ond, in Section 4.7 we recommend using a locally weighted version of the proposed OOB

intervals when the homoscedasticity assumption is violated. As a next step, we will con-

duct further numerical studies to assess the performance of these modified OOB intervals

and explore other options of intervals that are adaptive to heteroscedastic errors. Third,

our simulation results and data analysis in Sections 4.5 and 4.6 both imply that the quan-

tile regression forest approach suffers from bias and that its performance may improve

with a different strategy for selecting tuning parameters. Therefore, it is of interest to

investigate how to optimize the quantile regression forest intervals by tuning parameter

selection (Bayley and Falessi, 2018) and bias correction (Zhang and Lu, 2012; Tung et al.,

2014; Nguyen et al., 2015; Ghosal and Hooker, 2018; Hooker and Mentch, 2018). We will

further conduct numerical studies to compare our bias-corrected approach with other

state-of-the-art methods (Rosenfeld et al., 2017; Pearce et al., 2018; Romano et al., 2019;

Zhu et al., 2019).
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