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Abstract
Random forest (RF) methodology is one of the most popular machine learning techniques for

prediction problems. In this article, we discuss some cases where random forests may suffer and
propose a novel generalized RF method, namely regression-enhanced random forests (RERFs), that
can improve on RFs by borrowing the strength of penalized parametric regression. The algorithm for
constructing RERFs and selecting its tuning parameters is described. Both simulation study and real
data examples show that RERFs have better predictive performance than RFs in important situations
often encountered in practice. Moreover, RERFs may incorporate known relationships between the
response and the predictors, and may give reliable predictions in extrapolation problems where
predictions are required at points out of the domain of the training dataset. Strategies analogous to
those described here can be used to improve other machine learning methods via combination with
penalized parametric regression techniques.
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1. Introduction

Random forest (RF) methodology, proposed by L. Breiman [4], is one of the most pop-
ular machine learning techniques for regression and classification problems. In the last
few years, there have been many methodological and theoretical advances in the random
forests approach. Some methodological developments and extensions include case-specific
random forests [19], multivariate random forests [16], quantile regression forests [13], ran-
dom survival forests [11], enriched random forests for microarry data [1] and predictor
augmentation in random forests [18] among others. For theoretical developments, the sta-
tistical and asymptotic properties of random forests have been intensively investigated.
Advances have been made in the areas such as consistency [2] [15], variable selection [8]
and the construction of confidence intervals [17].

Although RF methodology has proven itself to be a reliable predictive approach in many
application areas [3][10], there are some cases where random forests may suffer. First, as
a fully nonparametric predictive algorithm, random forests may not efficiently incorporate
known relationships between the response and the predictors. Second, random forests may
fail in extrapolation problems where predictions are required at points out of the domain of
the training dataset. For regression problems, a random forest prediction is an average of the
predictions produced by the trees in the forest. Because each tree prediction corresponds to
some weighted average of the response values Y1, . . . , Yn observed in the original training
data, we can view the final random forest prediction at some observed predictor vectorX0

as a convex combination of the training response values given by

Ŷ (X0) =
n∑
i=1

wi(X0)Yi, (1)
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where wi(X0), . . . , wn(X0) are nonnegative weights with the constraint
∑n

i=1wi(X0) =
1. It follows that

min
1≤i≤n

Yi ≤ Ŷ (X0) ≤ max
1≤i≤n

Yi. (2)

As a consequence, the predictions given by random forests are always within the range of
response values in the training dataset, which is problematic if the response values in the
target dataset tend to fall outside this range.

We illustrate the above issues by considering the problem of forecasting Iowa corn
yield. The dataset, that will be further introduced in Section 4.2, contains county-level
corn yield data and predictor variables that provide information about soil quality and en-
vironmental conditions during 28 growing seasons. We used random forests to forecast
corn yields in the coming year by using the yield and predictor data in previous years as a
training dataset. Random forests failed to outperform multivariate linear regression in this
problem. For example, the root mean square error (RMSE) of random forests for predicting
2015 corn yield was slightly more than 10% higher than the RMSE of multivariate linear
regression.

There are at least two reasons why multivariate linear regression outperforms random
forests for predicting Iowa corn yield. First, in some years, the weather was so hot and
dry that the values of temperature and precipitation were beyond the ranges of those in
the training dataset, which creates an extrapolation problem. Second, corn yield has been
increasing generally over time due to consistent genetic improvement of maize and agri-
cultural technology developments. When forecasting corn yield for a future year using
random forests, as shown by (2), each forecast is bounded above by the largest corn yield
in the training dataset, even if the past trend suggests a record-setting crop for that future
year.

Next we use a simulated example to illustrate this point. Let the data-generating model
be Y = f(X) + 10Z + ε, where Y is the response variable, X = (X1, . . . , X10) and Z
are the predictors, and ε is a mean-zero error term. Suppose

f(X) = 0.1e4x1 +
4

1 + e−20(x2−1/2)
+ 3x3 + 2x4 + x5 + 0×

10∑
i=6

xi, (3)

a partially nonlinear additive function that is Equation (56) in J. H. Friedman’s “MARS”
paper [7]. We want to predict Y by using the predictorsX and Z. The distributions of pre-
dictorsX in both training and validation datasets are identical, and they are independently
simulated from the uniform distribution unif(0, 1). In the training dataset, the predictor
variable Z is sampled from unif(0, 0.8), while Z is sampled from unif(0, 1) in the valida-
tion dataset. The sample sizes for the training and the validation datasets are 1500 and 300,
respectively.

Figure 1 presents prediction errors when analyzing the simulated data with a random
forest and with a regression-enhanced random forest (RERF), the method we introduce
in this paper. The red points and the red smoothed curve in the Figure 1 illustrate the
relationship between the predictor Z and the pointwise prediction errors Y − Ŷ given by
the standard RFs. When the predictor Z > 0.8, the predicted errors are relatively large.
This example indicates that the random forest approach suffers in linear extrapolation.

To address the challenge, we develop RERF methodology that generalizes RF method-
ology by combining penalized parametric regression with RFs. The purpose of this paper
is to introduce RERFs and investigate the prediction performance of RERFs in comparison
with RFs. Parametric methods, such as multivariate linear regression and Lasso, can parsi-
moniously account for scientific mechanisms that dictate approximate linear relationships
between the response and predictor variables and allow for effective extrapolation out of the
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Figure 1: The pointwise prediction errors Y − Ŷ given by a random forest (red) and a
regression-enhanced random forest (blue) against the predictor Z and the corresponding
Loess smooth curves of Y − Ŷ against Z.

training dataset domain [5]. Nonparametric machine learning algorithms, such as random
forests and artificial neural networks, can account for nonlinearity and complex factor in-
teractions. RERFs can capitalize on the strength of the two types of methods and overcome
the corresponding disadvantages. The simulation study and the two real data examples in
this paper reach the same conclusion: the prediction performance of RERFs is better than
that of the standard RFs in both interpolation and extrapolation problems. Furthermore, in
extrapolation cases, RERFs far outperform RFs.

The rest of the paper is organized as follows. Section 2 introduces the algorithm for
building RERFs and also discusses tuning parameter selection. In Section 3, we con-
duct a simulation study to examine the prediction performance of RERFs in comparison
to RFs and Lasso. To illustrate the proposed methodology and demonstrate its relevance in
practice, Section 4 provides two real data examples involving high-performance concrete
strength prediction and Iowa corn yield forecasting. We conclude with further discussion
of RERF methodology in Section 5.

2. Method

Regression-enhanced random forests (RERFs) is a hybrid of random forests and penal-
ized parametric regression. RERFs can improve random forests in prediction accuracy and
also incorporate known relationships between the response variable and the predictors. Pe-
nalized parametric regression involves a penalty function P (·) applied on the regression
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coefficient β, which amounts to solving a minimization problem of the form

min
β
{L(Yi, Ŷi) + λP (β)}, (4)

where L(·, ·) is a loss function and Ŷi is the predicted response value that can be regarded
as a function of β. λ is called the penalty parameter. Lasso with an `1 penalty function
and Ridge regression with an `2 penalty function are two examples of penalized parametric
regression. Penalized parametric regression can be used to capture the global trend and
incorporate scientific knowledge about linear structure, but may not be flexible enough to
accommodate nonlinearity. Random forests offer a flexible nonparametric approach for
prediction, which leads to small fitting errors compared with parametric methods. How-
ever, small fitting errors do not necessarily imply small prediction errors, especially in
extrapolation problems. As shown by Figure 1 and the simulated example in Section 1,
random forests may suffer in extrapolation problems.

Let Y be a continuous response variable and X a p-dimensional vector of predictor
variables. We assume a standard data-generating model given by

Y = f(X) + ε (5)

for both training and validation datasets. We assume a training dataset CCC = {Ci =
(Xi, Yi) : i = 1, . . . , N} with a sample size N is available to fit the model for predic-
tion. The random forests algorithm has two tuning parameters [4], mtry and nodesize,
denoted as m and s. The RERF algorithm is described as follows:

Regression-Enhanced Random Forest Algorithm

• Step 1: Extend the p-dimensional predictorX to a (p+q)-dimensional predictorX∗

by adding higher-order, interaction or other known parametric functions ofX .

• Step 2: Run Lasso of Y on X∗ with a pre-specified penalty parameter λ. Let β̂λ be
the estimated coefficient, and ελ = Y −X∗β̂λ be the residual from Lasso. Create a
new training dataset Cλ = {Cλi = (Xi, ε

λ
i ) : i = 1, · · · , N}.

• Step 3: Build a random forest Tm,s using Cλ with pre-specified m and s. A predic-
tion for the response at a given predictor valueX0 is Ŷ (X0) =X0β̂λ + Tm,s(X0).

• Step 4: Select the tuning parameters (λ,m, s) through k-fold cross validation by
repeating step 2 and step 3 for candidate values of λ, m, and s. The selected tuning
parameters are denoted by λ∗,m∗ and s∗.

• Step 5: The RERF prediction for the response atX0 is given by Ŷ (X0) =X0β̂λ∗+
Tm∗,s∗(X0).

To explain the mechanics of RERFs, we will discuss each step in the algorithm in detail.
Expanding the design matrix in step 1 is optional. Whether to add higher-order, interaction
or other parametric terms should be decided by exploratory analysis or knowledge of the
relationship between Y and X . The main aim of Lasso regression in Step 2 is to select
variables in order to find a parametric structure that incorporates the global trend and known
relationships between the response and predictors. The penalty parameter λ controls the
strength of variable selection. When λ = 0, Lasso regression in Step 2 is equivalent to
multivariate regression without regularization. When λ → ∞, Lasso regression in Step 2
is equivalent to regressing on a constant value, i.e., fitting an intercept-only model. Thus,
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RERFs will be reduced to RFs for sufficiently large λ, and RFs can be viewed as a special
case of RERFs.

Tuning parameter selection in Step 4 is critical to the performance of RERFs. As
a hybrid method of Lasso and RFs, regression-enhanced random forests have three tun-
ing parameters: Lasso penalty parameter (λ), nodesize (s) and mtry (m). Our approach
for simultaneous selection of these three tuning parameters is an exhaustive search on 3-
dimensional tuning parameter space. The value of λ plays an important role in the predic-
tion performance of RERFs. The optimal value of λ for RERFs is not determined based on
the cross-validation performance of the Lasso predicton. Instead, the optimal value of λ is
determined based on the cross-validation performance of the RERF, which involves build-
ing a RF with Lasso residuals as response values. The plausible values of λ are positive
and unbounded. In our numerical examples, we choose λ from among the values in the set
{exp(log(0.001) + h × log(100)−log(0.001)

99 ) : h = 0, . . . , 99}, which is a set of 100 points
from 0 to 99 equally spaced on the logarithm scale. Following the advice of Breiman as
recounted by [12], we consider mtry equal to the default value of max{1, bp/3c} as well as
half and twice the default value. For nodesize, we consider the default value of 5 as well as
1 (the value recommended by Breiman for classification problems). Throughout the paper,
all the results from RERFs, Lasso and RFs were obtained by selecting tuning parameters
by cross validation.

3. Simulation study

In this section, we conduct a simulation study to examine the prediction performance of
RERFs compared with RFs for both interpolation and extrapolation cases. We simulated
data from a data-generating model given by

Y = f(X) + ε. (6)

The independent random errors ε follow N(0, 0.52). We considered three different struc-
tures for f(·):

• L: a linear model with an additive structure

f(X) = x1 + x2 + 2x3 + 2x4 + 0

10∑
i=5

xi, (7)

• P : a partially linear model with an additive structure

f(X) = sin(πx1) +
4

1 + e−20x2+10
+ 2x3 + 2x4 + 0

10∑
i=5

xi, (8)

• N : a non-additive partially linear model

f(X) = sin(πx1) +
4

1 + e−20x2+10
+ 2x3 + 2x4 + 3x3x4 + 0

10∑
i=5

xi. (9)

We also considered two different sampling distributions forX that lead to interpolation (I)
and extrapolation (E) as follows:

• I: all 10 predictor observations are i.i.d. unif(0, 1) in both training and validation
datasets.
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• E: x3 observations are i.i.d. beta(4, 8) in the training dataset and i.i.d. beta(5, 1) in
the validation dataset, for which predictions of Y are desired. The other 9 predictor
observations are i.i.d. unif(0, 1) in both training and validation datasets.

Most of the observations generated from beta(4, 8) are less than 0.6, while most of those
generated from beta(5, 1) are larger than 0.6. Thus, prediction for the second case (E)
often involves extrapolation.

In total, we consider 6 simulation scenarios formed by all the combinations of f(·)
and the distributions for X labeled as L × I , P × I , N × I , L × E, P × E and N ×
E. For each scenario, 1000 simulation runs were conducted. In each run, 1000 training
observations and 100 validation observations were randomly and independently generated
from the joint distribution of (X, Y ). We trained Lasso, RFs and RERFs using training
data. For each simulated training dataset, values of the tuning parameters for Lasso (λ),
RFs (s, m) and RERFs (λ, s, m) were separately selected using cross-validation. Then
we predicted response values for the validation data. Finally, the root mean square errors
(RMSEs) were then calculated over the validation dataset.

A variety of implementations of random forests have been developed. We use the R
package randomForest [12] to implement random forests algorithm throughout this paper.
This package was derived from the Fortran code originally by Leo Breiman and Adele
Cutler [19]. Lasso regression was implemented via the R Package glmnet [6].

The RMSEs from the simulation are shown in Figure 2. RERFs exhibited lower RMSE
than RFs for both interpolation and extrapolation problems, regardless of whether Lasso
performed better than RFs or not. Particularly in extrapolation cases, RERFs far outper-
formed RFs. The performance of RERFs was better than that of Lasso for all the models
except L×I and L×E. Because L×I and L×E are both linear models, Lasso is expected
to perform well for these cases. Nevertheless, the RMSEs of Lasso and RERFs were very
close for L× I and L× E.

As stated in Section 2, the value of penalty parameter λ has a substantial effect on the
prediction performance of RERFs. Figure 3 reports the selected penalty parameter values
for Lasso and RERFs for different data-generating models. In general, the selected penalty
parameter values of RERFs are larger than those of Lasso. Picking one simulated dataset
from Scenario N × I as an example, the selected penalty parameter value is 0.018 for
Lasso yielding 5 predictor variables {X2, X3, X4, X7, X8} with nonzero estimated coef-
ficients, while the selected penalty parameter value is 0.222 for RERF with 3 predictors
{X2, X3, X4} used to generate the residuals in Step 2 of RERFs.

4. Examples

4.1 High-performance concrete strength example

We use the high-performance concrete strength dataset [20] as a real example to demon-
strate our methodology. The concrete strength dataset is available on the UC Irvine Ma-
chine Learning Repository website, and has been widely used for evaluating machine learn-
ing algorithms, such as in [19] and [9]. It contains 1030 observations, with eight quantita-
tive predictors (cement, water, fly ash, blast furnace slag, superplasticizer, coarse aggregate,
fine aggregate and age of testing), and a response variable (concrete compressive strength).
The Abrams rule [14] implies the approximate proportionality between the cement-to-water
ratio (C/W) and the concrete compressive strength, so the cement-to-water ratio was com-
puted as a predictor and included in the dataset.

Predicting concrete compressive strength (CCS) given amounts of ingredients and age
is an important problem for civil engineering. However, high-performance concrete is such
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Figure 2: Boxplots of the RMSE values for Lasso, RFs, and RERFs for each data-
generating model in the simulation study of Section 3.

a highly complex material that modeling its strength behavior is very difficult. Exploratory
analysis shows that the relationships between high-performance concrete strength and in-
gredients are nonlinear, and there are substantial interactions among predictors. Many
previous studies have used machine learning algorithms, such as artificial neural networks
and random forests, to tackle this problem.

We compare the prediction performance of RERFs and RFs under six scenarios shown
in Table 1. Scenario INT1 and INT2 are interpolation cases, while the rest are extrapolation
cases. In Scenario INT1 and INT2, the complete dataset is randomly divided into training
dataset and validation dataset. In Scenario EXT1 and EXT2, the complete dataset is divided
based on the value of concrete compressive strength (CCS) so that the domains of CCS
in the training dataset and validation dataset are disjoint. In Scenario EXT3 and EXT4,
the cement-to-water ratios in the training dataset and validation dataset also have disjoint
domains. We run 1000 simulations for each scenario.

The computing results show that the average of selected penalty parameter values for
Lasso is 0.08, while the average of selected penalty parameter values for RERFs is 1.0.
Thus, there are fewer predictor variables that have nonzero estimated coefficients in Step 2
of RERFs than in Lasso.

Figure 4 illustrates the RMSE values for Lasso, RFs and RERFs for each scenario, by
which we can make the same conclusion as that in the simulation study. In the concrete
strength prediction example, RERFs exhibits better prediction performance than RFs in
both the interpolation and extrapolation cases, no matter whether Lasso is better than RFs
or not. Particularly, in the extrapolation cases, RERFs approach far outperforms RFs.
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Figure 3: Boxplots of the selected penalty parameter values for Lasso and RERFs for each
data-generating model in the simulation study of Section 3.

4.2 Iowa corn yield example

Forecasting corn yield is an age-old and important problem in agriculture and economics.
The United States produced roughly 14.2 billion bushels of corn in the 2014-2015 crop
marketing year, and the productions have been exported to more than 100 different coun-
tries. Iowa produces, by far, the most corn in the United States, supplying nearly 20 percent
of the country’s annual corn. Providing a valid corn yield prediction of Iowa before and
within the harvesting season is of importance to agricultural policy decision, land planning,
livestock husbandry, and option markets.

In this section, we compare the performance of RERFs, RFs and Lasso in forecasting
current year’s corn yield in Iowa by using previous years’ data and current year’s meteo-
rological and soil data. For instance, we used the complete data during 1988-2013 and the
meteorological and soil data during January – September 2014 to forecast the corn yield in
2014.

The dataset used in the analysis consists of three parts: corn yield data, meteorolog-
ical data and soil data. The corn yield dataset is available on the National Agricultural
Statistical Service (NASS) website. It contains annual averaged corn yields for grain per
acre for 99 counties in Iowa from 1926 to 2015. The data are collected by annual survey
after harvesting seasons. The meteorological dataset is available on Climate Data Online
system of National Center for Environmental Information. It is station-based containing
daily records of meteorological variables over most of meteorological monitoring stations
in each county in Iowa from 1988 to 2015. The meteorological variables include temper-
ature over surface, Drought Index, precipitation, air pressure, etc. We should note that the
meteorological recordings are time series data. We regard the mean of the meteorological
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Table 1: Description of training and validation datasets in the concrete strength prediction
example

Scenario Training set Validation set Training set
sample size

Validation set
sample size

INT1 Random 3/4 Remaining 1/4 772 258
INT2 Random 1/2 Remaining 1/2 515 515
EXT1 CCS > 25 CCS ≤ 25 735 295
EXT2 CCS< 16 or CCS> 56 16 ≤ CCS ≤ 56 761 269
EXT3 C/W< 2 C/W≥ 2 793 237
EXT4 C/W< 1 or C/W> 3 1 ≤ C/W ≤ 3 804 226

variable in each month as an individual predictor. For instance, we use the mean tempera-
ture for each month from May to September, so there are five monthly mean temperature
predictors in the feature matrix. The soil dataset contains one predictor variable named
Corn Suitability Rate, a continuous variable measuring the corn productivity levels of soils,
downloaded from the Iowa Soil Properties and Interpretations Database. There are 2689
observations and 49 predictor variables in the dataset. Observations with missing values
were omitted in the analysis.

Agricultural knowledge implies that extremely high and extremely low temperature
may both cause low corn yield. Flooding (high precipitation) and drought (low precipita-
tion) may cause low yield as well. As a consequence, we choose to include the quadratic
terms of monthly mean temperature and Drought Index in the feature matrix X∗ in Step 1
of RERFs. For all other predictors, only the first-order terms are included inX∗.

The RMSE values for Lasso, RFs and RERFs are shown in Figure 5. In the Iowa corn
yield example, the prediction performance of RFs can be improved by using RERFs. The
conclusion we make from Iowa corn yield example is consistent with the conclusion from
simulation study and concrete strength prediction example.

5. Discussion

In this paper we have introduced the regression-enhanced random forest approach, a novel
generalized RF method that has a better prediction performance than RFs in important sit-
uations often encountered in practice. The key idea of RERFs is borrowing the strength
of penalized parametric regression to improve on nonparametric machine learning ap-
proaches. Specifically, for RERFs, we run Lasso before RF, then construct a RF on the
residuals from Lasso. Because RERFs will be reduced to RFs for sufficiently large penalty
parameter, RFs can be viewed as a special case of RERFs.

Tuning parameter selection is critical to the performance of RERFs. The approach for
selecting three tuning parameters have been discussed in detail in Section 2. Because the
exhaustive search on 3-dimensional tuning parameter space is time consuming, parallel
computing can be applied to lessen the computing intensity. The other approach is an ap-
proximation procedure described as follows. First, fixing the nodesize and mtry to be the
default values, we select a value of penalty parameter by cross validation. Second, using the
selected value of penalty parameter λ, choose values of nodesize and mtry. Lastly, using the
selected values of the nodesize and mtry obtained in the previous step, we update the value
of the penalty parameter by cross validation. The above procedure reduces the comput-
ing intensity and yields values of the tuning parameter with cross-validation performance
similar to parameters obtained by an exhaustive search.

We focus on the comparison between RFs and RERFs in prediction performance for
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Figure 4: Boxplots of the RMSE values for Lasso, RFs and RERFs for each scenario in
the concrete strength prediction example.

regression problems. As a fully nonparametric predictive algorithm, random forests may
lack in efficiently incorporating known relationships between the response and the predic-
tors. Moreover, random forests may fail in extrapolation problems where predictions are
required at points out of the domain of the training dataset. However, RERFs can cap-
italize on the strength of both parametric and nonparametric methods and overcome the
corresponding disadvantages.

Numeric investigations, including one simulation study and two real data examples, all
reach the same conclusion that the prediction performance of RERFs is better than that
of RFs in both the interpolation and extrapolation problems we considered. Furthermore,
in our extrapolation cases, RERFs far outperform RFs. Strategies analogous to those de-
scribed here can be used to improve other machine learning methods via combination with
penalized parametric regression techniques.
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