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Abstract

Random forests are among the most popular machine learning techniques for pre-
diction problems. When using random forests to predict a quantitative response,
an important but often overlooked challenge is the determination of prediction in-
tervals that will contain an unobserved response value with a specified probability.
We propose new random forest prediction intervals that are based on the empirical
distribution of out-of-bag prediction errors. These intervals can be obtained as a
by-product of a single random forest. Under regularity conditions, we prove that the
proposed intervals have asymptotically correct coverage rates. Simulation studies and
analysis of 60 real datasets are used to compare the finite-sample properties of the
proposed intervals with quantile regression forests and recently proposed split con-
formal intervals. The results indicate that intervals constructed with our proposed
method tend to be narrower than those of competing methods while still maintaining
marginal coverage rates approximately equal to nominal levels.
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1 Introduction

The seminal paper on random forests (Breiman, 2001) has nearly 42,000 citations as of

December, 2018, according to Google Scholar. The impact of Breiman’s random forests

on machine learning, predictive analytics, data science, and science in general is di�cult

to measure but unquestionably substantial. The virtues of random forest methodology,

summarized nicely in the recent review article by Biau and Scornet (2016), include no need

to specify functional forms relating predictors to a response variable, capable performance

for low-sample-size high-dimensional data, general prediction accuracy, easy paralleliza-

tion, few tuning parameters, and applicability to a wide range of prediction problems with

categorical or continuous responses.

Like many algorithmic approaches to prediction, random forests are typically used to

produce point predictions that are not accompanied by information about how far those

predictions may be from true response values. From the statistical point of view, this

is unacceptable; a key characteristic that distinguishes statistically rigorous approaches

to prediction from others is the ability to provide quantifiably accurate assessments of

prediction error from the same data used to generate point predictions. Thus, our goal

here is to develop a prediction interval, based on a random forest prediction, that gives

a range of values that will contain an unknown continuous univariate response with any

specified level of confidence.

Formally, suppose (X, Y ) 2 Rp ⇥ R is a random predictor-response pair distributed

according to some unknown distribution G, where Y represents a continuous univariate

response that we wish to predict using its predictor information X. Suppose (X, Y ) is

independent of a training set Cn consisting of observations (X1, Y1), . . . , (Xn, Yn)
iid⇠ G. We

seek a prediction interval I↵(X,Cn) that will cover the response value Y with probability

1� ↵.

One existing approach for obtaining forest-based prediction intervals involves estimating

the conditional distribution of the response variable Y given the predictor vectorX = x via

quantile regression forests (Meinshausen, 2006). Lower and upper quantiles of an estimated

conditional distribution naturally provide a prediction interval for the response at any

point x in the predictor space. Prediction intervals produced with quantile regression
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forests (QRFs) often perform well in terms of conditional coverage at or above nominal

levels (i.e., P[Y 2 I↵(X,Cn)|X = x] � 1 � ↵). QRFs are also very versatile because

they do not require the scale or even the shape of the conditional response distribution to

be constant across predictor values. However, this versatility comes at a cost. Without

stronger assumptions about shared features of the conditional response distributions, each

conditional response distribution must be separately estimated using a relatively small

amount of data local to the point x in the predictor space at which a prediction interval is

desired. This can lead to highly variable estimators of conditional response distributions

and QRF intervals that are often quite wide, which diminishes their informativeness and

usefulness in some applications. There are, of course, some challenging prediction problems

where the flexibility of QRFs is needed, but there are many other problems where common

features of conditional response distributions can be exploited to produce more informative

prediction intervals.

In contrast to QRF intervals, our approach to interval construction borrows information

across the entire training dataset Cn by assuming that the distribution of a random forest

prediction error (response value less the random forest prediction) can be well approxi-

mated by the empirical distribution of out-of-bag (OOB) prediction errors obtained from

all training observations. Fortunately, the empirical distribution of OOB prediction errors

can be obtained with no additional resampling beyond the resampling used to construct

a single random forest. Once the empirical distribution of the OOB prediction errors has

been obtained, it is straightforward to combine this estimated prediction error distribution

with the random forest prediction of the response value for a new case to obtain a prediction

interval. By working with a de-trended version of the response, we can focus on estimating

one prediction error distribution and use this distribution to obtain all prediction intervals

rather than estimating separate conditional response distributions for all new cases as in

QRFs.

Our approach is similar to the general technique of prediction interval construction

via split conformal (SC) inference (Lei et al., 2018). Prediction intervals with guaranteed

finite-sample marginal coverage probability (i.e., P[Y 2 I↵(X,Cn)] � 1� ↵) can be gener-

ated using SC inference in conjunction with any method for estimating E(Y |X = x), the
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conditional mean of a response given the predictor variable values in a vector x. Our work

di↵ers from the random forest interval approach presented as a special case of SC inference

by Lei et al. (2018). Rather than relying on a single random partitioning of the training

set Cn into two subsets to obtain cross-validated prediction errors as in SC inference, we

use OOB prediction errors that can be naturally obtained from a single random forest con-

structed from all training observations. Just as SC inference can serve as a general method

for interval construction, our OOB-based approach could also be applied with conditional

mean estimation techniques other than random forests. We leave investigation of such

generalizations to future work and maintain the focus of this paper on random forests.

The rest of this paper is organized as follows. In Section 2, we provide some basic

background on the mechanics of random forests, explain some by-products of random

forests, and define our approach to random forest prediction interval construction. Section 3

introduces four coverage probability types and explains the asymptotic properties of the

proposed out-of-bag random forest prediction intervals. In Section 4, we describe competing

approaches for constructing random forest prediction intervals. In Section 5, we compare

the finite-sample performance of our prediction intervals to other methods in a simulation

study, in terms of four types of coverage rates and interval widths. In Section 6, we

evaluate the performance of our approach and others on 60 real datasets. The R code and

datasets used in Section 5 and Section 6 are publicly available at https://github.com/

haozhestat/RFIntervals. The paper concludes with a discussion in Section 7. Proofs of

main results and some additional figures are included in the Supplemental Materials.

2 Constructing Random Forest Prediction Intervals

Our proposed OOB prediction interval, defined in Section 2.3, is based on a single random

forest and its by-products. We use the random forest algorithm implemented in the R

package randomForest (Liaw et al., 2002) and summarized in Section 2.1.
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2.1 The Random Forest Algorithm

Based on Fortran code originally provided by Leo Breiman and Adele Cutler, the random-

Forest R package (Liaw et al., 2002) provides a convenient tool for generating a random

forest. The algorithm has two tuning parameters, referred to as mtry and nodesize in

the randomForest R package and in the description of the algorithm below. These tuning

parameters are discussed more fully after our formal definition of the algorithm.

1. Draw an equal-probability, with-replacement sample of size n from Cn to create a

bootstrap training dataset C⇤
n = {(X⇤

i , Y
⇤
i ) : i = 1, . . . , n}.

2. Use C⇤
n to grow a regression tree T

⇤.

(a) Start with all the cases in C⇤
n in a single root node N .

(b) Draw a simple random sample S of mtry predictor variables from the set of all

p predictor variables.

(c) Consider partitions of the cases in N into subnodes N1 and N2 that can be

defined by considering the values of a predictor variable x 2 S as follows. If x is

a quantitative variable, consider all possible partitions where cases in N1 satisfy

x  c and the cases in N2 satisfy x > c for some value c 2 R. For a categorical

predictor variable x, let A be the set of all the categories of x, and consider all

possible partitions where Nk is set of cases with x in Ak (k = 1, 2) for some

disjoint partition of A into nonempty subsets A1 and A2. From the allowable

set of partitions of the cases in N into subnodes N1 and N2 (each defined by a

choice of variable x in S and either a value of c 2 R or a disjoint partition of

the categories of x), choose the partition that minimizes

2X

k=1

X

i2Nk

�
Y

⇤
i � Ȳ

⇤
k

�2
,

where, for k = 1, 2, Ȳ ⇤
k is the average response value for cases in subnode k.

(d) For each newly created subnode eN with more than nodesize cases, that has

variation in the values of the response and in the values of at least one predictor,
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repeat steps (a) through (d) with eN in place of N . Any newly created subnode

with no more than nodesize cases or no variation in either response or predictor

vector values is split no further and is known as a terminal node of the tree T
⇤.

3. Independently repeat steps 1 and 2 a total of B times to produce trees T
⇤
1 , . . . , T

⇤
B

that constitute a random forest denoted as RF . (Note B may be chosen as a func-

tion of the training dataset Cn [i.e., B ⌘ B(Cn)] so that Monte Carlo variation in

the random forest construction process is not an important source of variation in RF

predictions. Put simply, B ⌘ B(Cn) should be large enough so that two random

forests constructed from the same training dataset Cn do not yield practically impor-

tant di↵erences in predictions for any target x vectors. See Section 2.4 of Biau and

Scornet (2016) for a summary of past work on the choice of B.)

The RF point prediction of the response Y for any specified value of the predictor X is

bY = 1
B

PB
b=1

bY ⇤
b , where bY ⇤

b is the prediction of Y provided by tree T ⇤
b (b = 1, . . . , B) in RF .

Thus, the RF prediction is simply an average of the predictions for Y provided by the trees

in RF . For each b = 1, . . . , B, the prediction of Y by tree T
⇤
b (i.e., bY ⇤

b ) is determined as

follows. Tree T
⇤
b is defined by the splitting rules selected for each split in step 2(c) of tree

construction and by the collection of cases that reside in each terminal node of the tree.

By examining the values of the predictor variables in X and applying the splitting rules

to those values, exactly one terminal node of tree T
⇤
b is identified. (Breiman et al. (2001)

referred to the process of identifying the terminal node associated with X as “dropping

an X down a tree,” a phrase that evokes a useful conceptualization when the root node

of the tree is pictured at the top of a tree diagram with the bifurcations associated with

splitting rules flowing down to terminal nodes at the bottom of the tree diagram.) Once

the terminal node associated with X is identified, the average of the responses for cases in

that terminal node provide bY ⇤
b .

In the construction of each regression tree (step 2), there are two important tuning

parameters that can impact performance. First, mtry determines how many variables are

considered when defining the splitting rule at each node in a tree. Second, nodesize controls

the termination of the tree construction process by defining the maximum terminal node

size. If the number of cases in a tree node is greater than nodesize (and variation among
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the response values and predictor values for cases in the node remains), the tree-growing

algorithm will split the node by drawing a simple random sample ofmtry predictor variables

and searching for the one variable among those selected that yields the best partition of the

node into two subnodes. To evaluate a candidate partition of a node into two subnodes,

each response value is centered on its subnode’s average response value and then squared

and summed across all node observations. The partition that minimizes this sum of squares

is considered best. Once every node in a tree is no longer eligible for splitting due to its size

or lack of within-node variation, the tree construction process terminates. Both mtry and

nodesize can be tuned to strike an e↵ective balance between variance and bias in predictions,

with larger values of mtry and smaller values of nodesize tending to reduce bias at the cost

of greater variance. We will later show that our prediction intervals perform well across a

range of typical choices for the tuning parameters mtry and nodesize.

2.2 Random Forest Weights

For all b = 1, . . . , B, the tree prediction of the bth tree, bY ⇤
b , is determined by finding the

terminal node of T ⇤
b that corresponds to X and then computing the average of the response

values for that terminal node. Because the ith training case may be present multiple times

in a single terminal node due to bootstrap resampling with replacement, bY ⇤
b is a weighted

average of the original training response values given by

bY ⇤
b =

nX

i=1

v
⇤
biYi,

for some non-negative weights v⇤b1, . . . , v
⇤
bn that sum to 1 for each b 2 {1, . . . , B}. Thus, the

random forest prediction of Y is an average of weighted averages that may be written as a

weighted average of the training response values; i.e.,

bY =
1

B

BX

b=1

bY ⇤
b =

1

B

BX

b=1

nX

i=1

v
⇤
biYi =

nX

i=1

 
1

B

BX

b=1

v
⇤
bi

!
Yi = w0Y , (1)

wherew = [w1, . . . , wn]0 ⌘
h

1
B

PB
b=1 v

⇤
b1, . . . ,

1
B

PB
b=1 v

⇤
bn

i0
is a vector of non-negative weights

that sum to 1 and Y = [Y1, . . . , Yn]0. Due to the algorithm for tree construction and aggre-
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gation described in Section 2.1, the weight wi on training response Yi will tend to be large

when Xi is close to X, where the notion of closeness is determined in an automated way

(via the tree construction process) to account for the relative importance of each compo-

nent of the predictor vector. In this sense, random forests can be viewed as an adaptive

nearest-neighbors prediction method (Lin and Jeon, 2006; Scornet, 2016; Wager and Athey,

2017). Aside from providing this useful interpretation of random forest predictions, random

forest weights have been utilized extensively in the development of new methodologies by

treating random forests as adaptive weight generators at a high level. For instance, random

forest weights play a crucial role in the quantile regression forests of Meinshausen (2006),

a point we explain more thoroughly in upcoming Section 4.2. Xu et al. (2016) proposed

a case-specific random forest that replaces the uniform bootstrap resampling of training

cases in Step 1 of the RF algorithm by a weighted bootstrap, where an initial random

forest is used to generate weights specific to a predictor vector of interest. Friedberg et al.

(2018) proposed a new approach to high-dimensional nonparametric regression estimation

by using random forest weights to define a kernel function for local linear regression.

2.3 Out-of-bag Prediction Intervals

To establish prediction intervals for response Y based on its RF point predictor bY from

Section 2.1, we wish to learn about the distribution of the RF prediction error D ⌘ Y � bY ;

i.e., we seek the distribution of prediction error that results when predicting a (currently

unavailable) response value Y using random forest RF constructed, by necessity, without

the use of (X, Y ). To gain information about the prediction error distribution, we examine,

for each i = 1, . . . , n, the error that results when predicting the ith training response Yi

using a random forest RF(i) constructed without use of case (Xi, Yi). Such a random

forest is readily available for each training case i as a subset of trees from our original

random forest RF . From the bootstrap sampling in step 1 of the random forest algorithm

described in Section 2.1, approximately
�
n�1
n

�n ⇡ exp(�1) ⇡ 0.368 of the B trees in the

original forest are constructed without (Xi, Yi). Thus, for each i = 1, . . . , n, there is a

subforest RF(i) of RF consisting of approximately B · exp(�1) trees formed without the

use of (Xi, Yi). For each i = 1, . . . , n, we can use RF(i) to obtain a prediction of Yi, denoted
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as bY(i). As in equation (1), we can express bY(i) as w0
(i)Y , where w(i) is a vector of non-

negative weights that sum to 1. Following Breiman (2001), we refer to bY(i) as an out-of-bag

(OOB) prediction. Likewise, we refer to the weights in w(i) as OOB weights.

Note that by construction, the ith element of w(i) is zero. Thus, importantly, Yi is

not involved in the OOB prediction bY(i) from forest RF(i), just as Y is not involved in the

prediction bY from forest RF . Consequently, the OOB prediction errors {Di ⌘ Yi� bY(i)}ni=1

provide a faithful representation of the errors incurred when generating a random forest

prediction for a case independent of the training data used to construct the forest.

Because (X1, Y1), . . . , (Xn, Yn), (X, Y ) are independent and identically distributed, the

OOB prediction errors D1, . . . , Dn are identically distributed and have approximately the

same distribution as D. The distribution of D di↵ers from the distribution of each OOB

prediction error only in that bY is based on the forest RF that involves n training observa-

tions and B trees, while each OOB prediction error is based on a forest constructed from

n�1 observations and comprised of a random number of trees varying around the expected

number B · exp(�1). As n and B grow large, the di↵erence between the distribution of D

and the empirical distribution of the OOB prediction errors D1, . . . , Dn becomes negligible,

and it is reasonable to assume

1� ↵ ⇡ P
⇥
D[n,↵/2]  D  D[n,1�↵/2]

⇤
= P

h
bY +D[n,↵/2]  Y  bY +D[n,1�↵/2]

i
, (2)

where D[n,�] is the � quantile of the empirical distribution of D1, . . . , Dn. Expression

(2) suggests
h
bY +D[n,↵/2],

bY +D[n,1�↵/2]

i
as a prediction interval for Y with approximate

coverage probability 1 � ↵. Section 3 provides a formal description of some asymptotic

properties of this proposed OOB prediction interval.

When the distribution of D is symmetric, we recommend a slightly modified OOB

prediction interval given by Ŷ ±|D|[n,↵], where |D|[n,↵] is the 1�↵ quantile of the empirical

distribution of |D1|, . . . , |Dn|. In practice, we recommend this symmetric OOB interval

unless asymmetry in the empirical distribution of D1, . . . , Dn makes the assumption of

symmetry for the distribution of D untenable. We use the symmetric version of the OOB

interval throughout all the simulations and data analyses presented in this paper.
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3 Asymptotic Properties of OOB Prediction Intervals

We assume the following four regularity conditions for asymptotic validity of OOB predic-

tion intervals:

(c.1) (X, Y ), (X1, Y1), . . . , (Xn, Yn)
iid⇠ G.

(c.2) The response variable follows an additive error model; i.e., Y = m(X) + e, where

m(·) : Rp ! R is an unknown mean function and e is a mean-zero error term

independent of X.

(c.3) The cumulative distribution function (cdf) F (·) of e = Y � m(X) is a continuous

function over R.

(c.4) TheRF prediction bY ⌘ bmn(X) and associatedRF(1) OOB prediction bY(1) ⌘ bmn,(1)(X1)

are consistent mean estimators; i.e., bmn(X)
P! m(X) and bmn,(1)(X1)

P! m(X1) as

n ! 1.

Assumptions (c.1)–(c.3) can be viewed as a relaxation of assumptions typically made for

multiple linear regression, where m(x) is a linear function x0� for some unknown � 2 Rp

and F (·) is the cdf of a normal distribution with mean 0 and some unknown variance

�
2 2 R+. The assumption of consistency of the OOB estimator bmn,(1)(X1) in (c.4) implies

consistency of the OOB estimator for any i = 1, . . . , n because bmn,(1)(X1), . . . , bmn,(n)(Xn)

are identically distributed by (c.1). Furthermore, consistency of bmn,(1)(X1) essentially

entails the consistency of bmn(X) (as the former involves a smaller forest than the latter),

but these consistency conditions are each explicitly stated in (c.4) for clarity.

The study of consistency of random forests and other ensemble methods is an active

area of research. Because of the complexity of the random forest algorithm described

in Section 2.1, proofs of random forest consistency have been established for simplified

versions of the algorithm that are more amenable to theoretical study. A history of relevant

theoretical developments is outlined by Biau and Scornet (2016). In the remainder of this

section, we focus on stating the properties of our OOB intervals that hold when random

forests are consistent.

10



In this paper, the theoretical and numerical properties of prediction intervals are studied

with respect to the following four coverage probability types:

• Type I: P[Y 2 I↵(X,Cn)] (marginal coverage);

• Type II: P[Y 2 I↵(X,Cn)|Cn] (conditional coverage given Cn);

• Type III: P[Y 2 I↵(X,Cn)|X = x] (conditional coverage given X = x); and

• Type IV: P[Y 2 I↵(X,Cn)|Cn,X = x] (conditional coverage given X = x and Cn).

The following theorems and their corollaries address these four coverage probability types

that can be asymptotically guaranteed for OOB intervals. Proofs of all results are provided

in the Supplemental Materials.

Theorem 1 Under conditions (c.1) – (c.4), the 100(1�↵)% out-of-bag prediction interval

has asymptotically correct conditional coverage rate given Cn for any ↵ 2 (0, 1); that is,

P
⇢
Y 2

⇥
bmn(X) +D[n,↵/2], bmn(X) +D[n,1�↵/2]

⇤ ����Cn

�
P�! 1� ↵ (3)

as n ! 1 for any ↵ 2 (0, 1).

Theorem 1 is concerned with Type II coverage, i.e., conditional coverage probability given

a large training dataset. This conditional coverage probability is relevant when a training

dataset is in hand and interest lies in knowing the chance that an OOB prediction interval

produced with this training set for a randomly drawn X will cover the random response

value Y corresponding to X. While Theorem 1 provides an asymptotic result, we study

finite-sample properties of the OOB prediction interval for this type of conditional cover-

age in Section 5 by drawing a single training dataset and empirically approximating the

conditional coverage probability for that training dataset. The empirical approximation is

obtained by examining the proportion of OOB intervals constructed from the given train-

ing dataset that cover Y across a large number of independent (X, Y ) draws from G. The

process is repeated for many training datasets to learn how conditional coverage probability

varies as a function of Cn.
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Corollary 1 Under the conditions for Theorem 1,

P
�
Y 2

⇥
bmn(X) +D[n,↵/2], bmn(X) +D[n,1�↵/2]

⇤ 
! 1� ↵ (4)

as n ! 1 for any ↵ 2 (0, 1).

Corollary 1 is concerned with Type I coverage, i.e., the marginal coverage probability

considered by Lei et al. (2018), which is the chance of drawing both training data Cn and

(X, Y ) ⇠ G so that the resulting prediction interval constructed from Cn and X covers

Y . This marginal coverage probability can be viewed as the conditional probability in

Theorem 1 averaged over the distribution of Cn. We investigate the finite-sample properties

of our OOB interval’s marginal coverage in Section 5 by averaging empirical estimates of

conditional coverage over a large number of training dataset drawn from the distribution

of Cn.

Theorem 2 Let x 2 Rp
be a fixed vector such that bmn(x)

P! m(x) as n ! 1, and suppose

that conditions (c.1) – (c.4) hold. Then, the 100(1�↵)% out-of-bag prediction interval has

asymptotically correct conditional coverage rate given Cn and X = x for any ↵ 2 (0, 1);

that is,

P
⇢
Y 2

⇥
bmn(x) +D[n,↵/2], bmn(x) +D[n,1�↵/2]

⇤ ����Cn,X = x

�
P�! 1� ↵ (5)

as n ! 1 for any ↵ 2 (0, 1).

Theorem 2 extends the conditioning on Cn in Theorem 1 to conditioning on both Cn

and X = x. This Type IV coverage probability is relevant for a researcher who has

a large training dataset in hand and a particular target value of x for which prediction

of the corresponding Y (drawn from the conditional distribution of Y given X = x) is

desired. Finite-sample coverage properties for this type of conditional coverage are studied

in Section 5 for selected values of x.

Corollary 2 Under the conditions for Theorem 2,

P
⇢
Y 2

⇥
bmn(x) +D[n,↵/2], bmn(x) +D[n,1�↵/2]

⇤ ����X = x

�
! 1� ↵ (6)
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as n ! 1 for any ↵ 2 (0, 1).

Corollary 2 provides a relevant result for Type III coverage, i.e., conditional coverage given

X = x, which is the type of conditional coverage established by Meinshausen (2006)

for quantile regression forests (see Section 4.2). The conditional coverage probability in

Corollary 2 can be obtained as the expectation of the conditional coverage probability

considered in Theorem 2, where the expectation is taken with respect to the distribution

of the training dataset Cn. The finite-sample performance of OOB prediction intervals is

studied for this type of conditional coverage in Section 5.

4 Alternative Random Forest Intervals

In this section, we describe two existing approaches for generating random forest prediction

intervals. These methods are compared with the proposed OOB intervals in simulation and

data analysis in Sections 5 and 6, respectively. To our knowledge, our comparison of these

methods is the first to appear in the literature. We also mention, in Section 4.3, two recent

methods for using random forests to produce a confidence interval for the conditional mean

of Y given X = x.

4.1 Split Conformal Prediction Intervals

The conformal prediction interval framework originally proposed by Vovk et al. (2005,

2009) is an e↵ective general method for generating reliable prediction intervals. However,

the original conformal prediction method is computationally intensive. Lei et al. (2018)

proposed a new method, called split conformal (SC) prediction, that is completely general

and whose computational cost is a small fraction of the full conformal method. The al-

gorithm for constructing a SC prediction interval using a random forest prediction is as

follows:

1. Randomly split {1, . . . , n} into two equal-sized subsets L1,L2.

2. Build a random forest from {(Xi, Yi) : i 2 L1} (a subset of the full training dataset

Cn) to obtain an estimate of the mean function m(·) denoted as bmn/2(X).
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3. For each i 2 L2, compute the absolute residual Ri = |Yi � bmn/2(X)|. Let d be the

kth smallest value in {Ri : i 2 L2}, where k = d(n/2 + 1)(1� ↵)e.

4. The split conformal 100(1�↵)% prediction interval for Y is
⇥
bmn/2(X)� d, bmn/2(X) + d

⇤
.

Under the assumption that (X1, Y1), . . . , (Xn, Yn), (X, Y )
iid⇠ G and that the residuals

{Ri : i 2 L2} have a continuous joint distribution, Lei et al. (2018) prove that

1� ↵  P
�
Y 2

⇥
bmn/2(X)� d, bmn/2(X) + d

⇤ 
 1� ↵ +

2

n+ 2
. (7)

Note that this is a very useful result because it guarantees finite-sample marginal coverage

at level no less than 1�↵. One potential drawback to the intervals, however, is that they are

calibrated for gauging the uncertainty of prediction errors from random forests constructed

from n/2 rather than n observations. We find that this sample splitting can result in

slightly conservative finite-sample performance with regard to interval width. Nonetheless,

the SC intervals do work well in our simulations and data analyses presented in Sections 5

and 6.

From a computational standpoint, SC intervals are extremely e�cient compared to

the original conformal method. Compared to our proposed approach, which requires the

construction of only one random forest for both point prediction and interval estimation,

SC intervals involve the construction of a random forest from a randomly selected half of

the original training dataset. We expect that most users of random forest methodology

will desire a random forest point prediction based on the full training dataset as well as a

prediction interval. Thus, the SC approach for random forests can be viewed as requiring

the construction of two forests rather than just the one needed for our random forest point

prediction and OOB interval. Of course, this extra cost of a second forest can be avoided

altogether for users who are satisfied with the point prediction provided by bmn/2(X) in

step 2 of the SC interval method that is based on a randomly selected half of the training

dataset.
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4.2 Quantile Regression Forest

As discussed in Section 1, a QRF (Meinshausen, 2006) can be used to estimate the condi-

tional distribution of Y given X = x, and quantiles from this estimated distribution can

be used to form a prediction interval for Y . To understand in more detail how a QRF

works, it is useful to revisit the RF weights w1, . . . , wn defined in Section 2.2. Based on

the algorithm for random forest construction and the method for predicting a response

value via a random forest described in Section 2.1, each RF weight depends on both the

training dataset Cn and the value of X. To emphasize conditioning on X = x, we will

write, throughout this section, weight wi as wi(x) for all i = 1, . . . , n.

Equation (1) from Section 2.2 shows that the RF prediction of Y can be viewed as

the mean of a discrete distribution that places probability wi(x) on Yi for all i = 1, . . . , n.

A QRF uses this discrete distribution as an estimate of the conditional distribution of Y

given X = x. Specifically, write I(·) to denote an indicator function and let bHn(y|x) =
Pn

i=1 wi(x)I(Yi  y) serve as an estimator of H(y|x) ⌘ P(Y  y|X = x), the conditional

cdf of Y given X = x. For ↵ 2 (0, 1), let bQ↵(x) ⌘ inf{y 2 R : bHn(y|x) � ↵} denote the

↵-quantile of the estimated conditional distribution Y given X = x. Then, a QRF-based

100(1 � ↵)% prediction interval for Y is given by [ bQ↵/2(x), bQ1�↵/2(x)]. Under regularity

conditions and a few simplifying assumptions, Meinshausen (2006) showed that, for any

given x, the absolute error of the QRF conditional cdf approximation converges uniformly

in probability to 0 as n ! 1. Furthermore, an analysis of five datasets in Meinshausen

(2006) shows average coverage rates for 95% QRF intervals ranging from 90.2% to 98.6%

in five-fold cross-validation analysis. We investigate the performance of QRF prediction

intervals relative to SC intervals and our proposed OOB intervals in Sections 5 and 6.

4.3 Confidence Intervals

Wager et al. (2014) use ideas from Efron (1992) and Efron (2014) to develop bias-corrected

versions of Infinitesimal Jackknife and Jackknife-after-Bootstrap estimates of Var[bmn(x)],

the variance of the random forest estimator ofm(x) = E(Y |X = x). Because the jackknife-

after-bootstrap estimator makes explicit use of OOB tree predictions, there are similarities

with our proposed procedure. Although Wager et al. (2014) primarily focus on how well
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proposed estimators approximate Var[bmn(x)], a footnote regarding intervals displayed in

Figure 1 of Wager et al. (2014) proposes a confidence interval of the form bmn(x)± z↵b�(x),

where z↵ is the 1� ↵ quantile of the standard normal distribution and b�(x) is a standard

error computed by taking the square root of the average of jackknife and infinitesimal

jackknife estimators of Var[bmn(x)]. This interval could be expected to provide coverage of

E[bmn(x)] with confidence level approximately equal to 100(1� ↵)% under the assumption

that bmn(x) is approximately normal with variance b�2(x).

Another approach for constructing confidence intervals from a procedure similar to

random forests is proposed in Mentch and Hooker (2016). Instead of aggregating over trees

built from full bootstrap samples of size n, Mentch and Hooker (2016) average over trees

built on random subsamples of the training dataset and demonstrate that the resulting

estimator takes the form of an asymptotically normal incomplete U-statistic. Furthermore,

Mentch and Hooker (2016) develop a consistent estimator for the variance of the relevant

limiting normal distribution that naturally leads to a confidence interval for the mean of

their estimator.

The intervals of Wager et al. (2014) and Mentch and Hooker (2016) are confidence

intervals for the expected value of estimators of E(Y |X = x). When the estimators they

consider are unbiased (or at least
p
n-consistent) for E(Y |X = x), their proposed intervals

serve as confidence intervals for E(Y |X = x). Because our focus is on prediction intervals

for Y (conditional mean plus random error) that are necessarily wider than confidence

intervals for E(Y |X = x), we do not consider these confidence intervals further in the

current paper.

5 Simulation Study

In this section, we use simulated examples to illustrate the finite-sample performance of

our proposed OOB prediction intervals. We compare OOB, SC and QRF interval widths

and their Type I through IV coverage rates introduced in Section 3. The R package

conformalInference is used to construct split conformal prediction intervals, and the R

package quantregForest is used to build quantile regression forests.

We simulate data from an additive error model: Y = m(X) + ✏, where the predictor

16



X = (X1, . . . , Xp)> with p = 10 and ✏ is the error term. The distribution of predictor

vector X, the distribution of error term ✏, the mean function m(·), and the training sample

size n may all a↵ect the performance of prediction intervals. In our simulation study, a

factorial design is considered for these four factors:

• Mean functions : m(x) = x1 + x2 (linear), m(x) = 2 exp(�|x1| � |x2|) (nonlinear),

and m(x) = 2 exp(�|x1|� |x2|) + x1x2 (nonlinear with interaction).

• Distributions of errors: ✏ ⇠ N(0, 1) (homoscedastic), ✏ ⇠ t3/
p
3 (heavy-tailed), ✏ ⇠

N
⇣
0, 12 +

1
2

|m(X)|
E|m(X)|

⌘
(heteroscedastic).

• Distributions of predictors: X ⇠ N(0, Ip) (uncorrelated), and X ⇠ N(0,⌃p) (cor-

related), where ⌃p is an AR(1) covariance matrix with ⇢ = 0.6 and diagonal values

equal to 1.

• Training sample sizes: n = 200, 500, 1000, 2000, and 5000.

The full-factorial design results in 90 di↵erent simulation scenarios. For each of the 90

scenarios, the random forest tuning parameters are selected from mtry 2 {1, . . . , 10} and

nodesize 2 {1, . . . , 5} to minimize average cross-validated mean squared prediction error

over five-fold cross-validation for 10 randomly generated datasets. The selected tuning

parameters for any given scenario are then used for construction of all random forests and

intervals for each dataset simulated according to that scenario. Dataset-specific adaptive

tuning and performance for di↵erent choices of mtry and nodesize is studied in Section 6.

The number of trees is 2000 for all random forests built in the simulation study (Oshiro

et al., 2012). Following Lei et al. (2018), we set the nominal level at 0.9 for all prediction

intervals constructed in this section.

5.1 Evaluating Type I and II coverage rates

To evaluate the Type I and II coverage rates, we simulate 200 datasets for each of our 90

simulation scenarios. Each dataset consists of training cases (n = 200, 500, 1000, 2000, or

5000) and 500 test cases randomly and independently generated from the joint distribution

of (X, Y ). For each interval method and each simulated dataset, Type II coverage is
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estimated by calculating the percentage of 500 test case response values contained in their

prediction intervals. Type I coverage for each simulation scenario and interval method is

estimated by averaging over the 200 Type II coverage estimates obtained from the 200

simulated datasets for each simulation scenario. Because results for scenarios involving

uncorrelated predictors lead to the same conclusions as results for correlated predictors,

figures for the former are displayed in the Supplemental Materials.

Figure 1 and Figure S.1 summarize the Type I and II coverage rate estimates for OOB,

SC and QRF intervals for all training sample sizes and data-generating models. Each

circle is the average of the 200 Type II coverage estimates summarized in a boxplot. This

average represents the empirical Type I coverage rate for any given scenario. Estimates

of the Type I coverage rates of OOB and SC prediction intervals are very close to 0.9

(the nominal level). In contrast, QRF prediction intervals are more likely to over-cover or

under-cover target response in terms of Type I coverage. As the sample size n increases,

the OOB and SC Type II coverage rate estimates show decreased variation and become

more concentrated around 0.9. Additionally, the coverage rates of OOB and SC prediction

intervals are stable across the mean functions, predictor correlations, and measurement

error distributions in our simulation study.

Given the random forest for any simulated dataset, OOB interval width is the same

for all test cases. Similarly, the SC method produces intervals of constant width across

test cases. On the other hand, the width of QRF intervals varies across test cases. Thus,

for each simulated dataset, we record one OOB interval width, one SC interval width,

and 500 QRF interval widths. To compare the interval widths of these three methods, we

average the 500 QRF interval widths for each simulated dataset. Boxplots summarizing

the distributions of interval widths are provided in Figure S.2 and Figure S.3. To provide

a clearer comparison of interval widths, we compute the ratio of the SC interval width

relative to the OOB interval width and the ratio of the average QRF interval width to the

OOB interval width for each simulated dataset. Boxplots of the log2 transformation of the

ratios are presented in Figure 2 and Figure S.4. Figure S.2 and Figure S.3 show that the

interval widths shrink as sample size increases. Figure 2 and Figure S.4 indicate that OOB

prediction intervals tend to be narrower than intervals produced by competing methods.
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The only exceptions occur when QRF intervals have coverage rates substantially below the

nominal level.

5.2 Evaluating Type III and IV coverage rates

The simulation settings for evaluating the Type III and IV coverage probabilities are the

same as in Section 5.1 except that no test cases are simulated. Instead, for each simulated

training dataset, OOB, SC and QRF prediction intervals are generated for X = x, where x

is a specified 10-dimensional predictor vector. Using the known conditional distribution of

Y given X = x for the given simulation scenario, we compute the exact Type IV coverage

probability for each interval. The Type III coverage rate for any interval method and

simulation scenario is then estimated by averaging over the 200 Type IV coverage rate

estimates computed from the 200 training datasets simulated for that scenario.

Figures 3, 4, S.5, and S.6 show the boxplots of Type IV coverage rate estimates, i.e.,

estimates of P[Y 2 I↵(X,Cn)|Cn,X = x] for OOB, SC and QRF prediction intervals

and x = 0 or 1 (10-dimensional vectors of zeros and ones, respectively). Each circle

is the average of the 200 Type IV coverage estimates summarized in a boxplot. This

average represents the empirical Type III coverage rate for any given scenario. As in the

Type I and II coverage results presented in Section 5.1, we see that OOB and SC intervals

perform similarly across all scenarios with respect to Type III and IV coverage. In contrast,

QRF intervals tend to be more variable within scenarios than OOB and SC intervals in

terms of Type IV coverage and display Type III coverage values that often di↵er from the

corresponding values for OOB and SC intervals. QRF intervals clearly perform better for

some scenarios (Linear⇥Heteroscedastic scenarios, for example) and worse for others (e.g.,

seven of the nine panels in Figure 3).

Aside from the size of the training dataset n, major factors that a↵ect finite-sample

Type III and IV coverage include the shape of the mean function m(·) in a neighborhood

of x and Var(✏|X = x) relative to EX{Var(✏|X)} when error variance is heteroscedastic.

To understand the impact of these factors, consider simulation scenarios involving the non-

linear mean function m(x) = 2 exp(�|x1|� |x2|). This nonlinear function achieves a global

maximum at x = 0. Because P{m(X) < m(0)} = 1, each training case has a conditional
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Figure 1: Boxplots of the Type II coverage rate estimates, i.e., P[Y 2 I↵(X,Cn)|Cn],
of out-of-bag (OOB) prediction intervals, split conformal (SC) prediction intervals, and
quantile regression forest (QRF) intervals when X ⇠ N(0,⌃p) (correlated predictors).
Each circle is the average of the 200 Type II coverage estimates summarized in a boxplot,
and represents an estimate of Type I coverage rate, i.e., P[Y 2 I↵(X,Cn)].
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Figure 2: Boxplots of the log2 ratios of split conformal (SC) interval widths to out-of-bag
(OOB) interval widths, and the log2 ratios of quantile regression forest (QRF) interval width
averages to out-of-bag (OOB) interval widths when X ⇠ N(0,⌃p) (correlated predictors).
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mean response strictly less thanm(0) with probability one (i.e., PXi{E(Yi|Xi) < m(0)} = 1

for all i = 1, . . . , n). Because a random forest prediction is simply a weighted average of

training responses (as discussed in Section 2.2), the random forest estimator of m(0) has

expectation less than m(0). This bias at x = 0 leads to larger prediction errors at x = 0

than for other points in the predictor domain and under-coverage for OOB, SC and QRF

intervals visible in the middle row of Figure 3.

The under-coverage problem at x = 0 in the nonlinear case is exacerbated for OOB

and SC intervals for the heteroscedastic case. The OOB and SC intervals rely on a sin-

gle distribution of prediction errors estimated by combining information from prediction

errors made throughout the training dataset rather than the prediction errors made at

any specified x vector. Thus, all else equal, an OOB or SC prediction interval will tend

to over-cover response values at a value x for which the error variance is relatively low

and under-cover response values at a value x for which the error variance is relatively

high. For the Nonlinear⇥Heteroscedastic case with x = 0, Var(✏|X = 0) is more than

twice EX{Var(✏|X)}, the mean error variance over the predictor space. Thus, the severe

under-coverage of OOB and SC intervals in the second row and third column of Figure 3

is as expected due to both underestimation of the mean function and relatively large er-

ror variance at x = 0. Although QRF intervals su↵er from the same random forest bias

problem that plagues OOB and SC intervals, the adaptive width of QRF intervals typically

provides improved Type III and IV coverage results for QRF intervals relative to OOB and

SC intervals in heteroscedastic scenarios.

For prediction at x = 1, the second row of Figure 4 shows improved performance for

all intervals relative to the x = 0 case. Random forest bias at x = 1 is relatively min-

imal because the average value of m(x) for x near 1 is relatively close to m(1). This

leads to Type III and IV coverages near the nominal 0.90 level for the homoscedas-

tic and heavy-tailed scenarios. Over-coverage for OOB and SC intervals results for the

Nonlinear⇥Heteroscedastic case in Figure 4 because the error variance at x = 1 is less

than 75% of the mean error variance EX{Var(✏|X)}. The Type III and IV coverage results

for OOB intervals presented in Figures 3, 4, S.5, and S.6 are as expected when consid-

ering the shape of the mean function near x and the value of Var(✏|X = x) relative to
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EX{Var(✏|X)} in each scenario.

In response to a referee’s comment, we have generated Figures S.7 and S.8 that evaluate

Type III and IV coverage at x = x3 ⌘ (3,�3, 3, . . . , 3)0. Whether predictor variables are

correlated or uncorrelated, the multivariate normal distribution of X in our simulation

study assigns very low probability to neighborhoods containing x3. Thus, most simulated

training datasets will contain no observations in close proximity to x3. Nonetheless, a

random forest predictor will find “nearest neighbors” in the training dataset as those with

the highest weights in (1). The resulting extrapolation may or may not work well, depending

on the true mean function m(·). Figures S.7 and S.8 show that OOB and SC intervals

have highly variable Type IV coverage and Type III coverage near (but often below) the

nominal level for linear and nonlinear scenarios. For the scenarios involving the nonlinear

mean function with interaction, the Type III and IV coverage levels for OOB and SC

intervals are estimated to be zero or near zero. This is not surprising considering that

m(X) tends to be much greater than m(x3) with probability near one when m(x) =

2 exp(�|x1| � |x2|) + x1x2. Thus, regardless of the training observations that receive the

greatest weight in (1), the random forest prediction is likely to be substantially greater than

m(x3) so that large prediction errors are likely. QRF intervals are wide and over-cover

for our linear and nonlinear scenarios and show severe under-coverage for the nonlinear

scenarios with interaction. None of the prediction interval approaches we have studied can

be recommended for prediction in a region of the predictor space where no training data are

available, but we know of no approach that can be generally trusted for such extrapolation.

6 Data Analysis

In this section, we compare the performance of OOB, SC and QRF prediction intervals on

60 actual datasets, summarized in Table 1. The majority of the datasets (40 out of 60) were

analyzed by Chipman et al. (2010). The other 20 datasets come from the UC Irvine Machine

Learning Repository website. These datasets span various application areas, including

biological science, physical science, social science, engineering, and business. Sample sizes

range from 96 to 45730, and the number of predictors ranges from 3 to 100. Prior to

analysis, we standardize the response variable for each dataset to make the interval widths
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Figure 3: Boxplots of the Type IV coverage rate estimates, i.e., P[Y 2 I↵(X,Cn)|Cn,X =
0], for out-of-bag (OOB) prediction intervals, split conformal (SC) prediction intervals,
and quantile regression forest (QRF) intervals when X ⇠ N(0,⌃p) (correlated predictors).
Each circle is the average of the 200 Type IV coverage estimates summarized in a boxplot,
and represents an estimate of Type III coverage rate, i.e., P[Y 2 I↵(X,Cn)|X = 0].
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Figure 4: Boxplots of the Type IV coverage rate estimates, i.e., P[Y 2 I↵(X,Cn)|Cn,X =
1], for out-of-bag (OOB) prediction intervals, split conformal (SC) prediction intervals,
and quantile regression forest (QRF) intervals when X ⇠ N(0,⌃p) (correlated predictors).
Each circle is the average of the 200 Type IV coverage estimates summarized in a boxplot,
and represents an estimate of Type III coverage rate, i.e., P[Y 2 I↵(X,Cn)|X = 1].
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for di↵erent datasets more comparable. Cases with one or more missing values are omitted.

The number of trees is 2000 for all random forests built in this section, and the nominal

coverage rate is set at 0.9.

Because the repeated measures of the response variable given a fixed predictor vector

X = x are not common in these datasets, Type III and IV coverage probabilities are

di�cult to evaluate. Thus, only Type I and II coverage probabilities are considered in

this section. Our approach to empirically assess Type I and II coverage probabilities is

through five-fold cross validation. For each run of five-fold cross validation, we randomly

partition the whole dataset into five non-overlapping parts. Four parts are combined to

form a training set that is used to compute prediction intervals for the response values of

cases in the fifth part. Then we calculate the percentages of response values in the fifth part

contained by their intervals to approximate Type II coverage rate. All
�
5
4

�
training/test sets

are analyzed for each partition, and a total of 20 random partitions are analyzed for each

dataset. For each dataset and method, this process yields 100 empirical Type II coverage

rates, which can be averaged to obtain an empirical Type I coverage rate.

The empirical coverage rates (Type I: circles, Type II: boxplots) for all three methods

for all 60 datasets are presented in Figure S.9 - S.11. Figure 5 shows a summary of all

the Type II coverage rate estimates with datasets on the horizontal axis in ascending order

by the average value of the OOB, SC and QRF Type I coverage rate estimates. Relative

interval widths are summarized in Figure 6, where we present the log2 ratio of the average

width of SC intervals to the average width of OOB intervals, and the average width of QRF

intervals to the average width of OOB intervals. The order of datasets in Figure 6 is the

same as the order in Figure 5.

The findings from real data analysis are consistent with the conclusions made in the

simulation study. Both the OOB prediction intervals and the SC prediction intervals have

good Type I coverage rates centered at 0.9, but the Type I coverage rate of QRF intervals

deviate substantially from 0.9 for many datasets. Furthermore, OOB prediction intervals

are narrower than SC prediction intervals for almost all 60 datasets, and the widths of

OOB prediction intervals tend to be similar to or narrower than QRF interval widths. The

few exceptions occur for datasets with QRF coverage rate estimates well below 0.9.
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For the data analysis results presented so far in this section, the mtry and nodesize

tuning parameters of random forests are selected for each dataset by five-fold cross vali-

dation to minimize cross-validated mean squared prediction error over (mtry, nodesize)

2
�⌃

1
2

⌅
p
3

⇧⌥
,
⌅
p
3

⇧
, 2
⌅
p
3

⇧ 
⇥ {1, 5} = {2, 3, 6}⇥ {1, 5}, following the advice of Breiman as re-

counted by Liaw et al. (2002). The tuning parameters are then fixed at the selected values

during the subsequent OOB, SC and QRF interval evaluation (which also involves five-fold

cross-validation, although five-fold cross-validation is repeated 20 times for coverage proba-

bility estimation). To show how the three prediction intervals adapt to other choices of the

random forest tuning parameters, we evaluate the performance of the prediction intervals

on one real data example, the Concrete Strength dataset from UCI, for each combination

of nodesize 2 {1, 5} and mtry 2 {2, 4, 6, 8}. The results are illustrated in Figure 7. As in

our other analyses, OOB and SC prediction intervals tend to cover close to 90% of the test

case response values on average, and OOB intervals are narrower than both SC and QRF

intervals regardless of the mtry and nodesize values. The QRF intervals have estimated

Type I coverage rates sometimes above and sometimes below the nominal level depending

on the tuning parameter values. Both the OOB and SC intervals show stable performance

across tuning parameter values, while QRF intervals are sensitive to the choice of tuning

parameters in terms of coverage and width. Overall, the OOB intervals perform uniformly

best across the investigated tuning parameter values for this dataset.

7 Concluding Remarks

We propose OOB prediction intervals as a straightforward technique for constructing pre-

diction intervals from a single random forest and its by-products. We have provided theory

that guarantees asymptotic coverage (of various types) for OOB intervals under regularity

conditions. Our simulation analysis in Section 5 and our analysis of 60 datasets in Sec-

tion 6 provide evidence for reliability and e�ciency of OOB intervals across a wide range of

sample sizes and scenarios that do not necessarily conform to the assumptions required for

our theorems. Thus, the performance record for OOB intervals established in this paper

indicates that OOB prediction intervals can be used with confidence for a wide array of

practical problems.
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Table 1: Name, n = total number of observations (excluding observations with missing
values), and p = number of predictor variables for 60 datasets.

No. Name n p No. Name n p

1 Abalone 4177 8 31 Facebook Metrics 495 17

2 Air Quality 9357 12 32 Fame 1318 22

3 Airfoil Self-Noise 1503 5 33 Fat 252 14

4 Ais 202 12 34 Fishery 6806 14

5 Alcohol 2462 18 35 Hatco 100 13

6 Amenity 3044 21 36 Hydrodynamics 308 6

7 Attend 838 9 37 Insur 2182 6

8 Auto MPG 392 7 38 Istanbul Stock 536 6

9 Automobile 159 18 39 Laheart 200 16

10 Baseball 263 20 40 Medicare 4406 21

11 Basketball 96 4 41 Mumps 1523 3

12 Beijing PM2.5 41757 11 42 Mussels 201 4

13 Boston 506 13 43 Naval Propulsion Plants 11934 16

14 Budget 1729 10 44 Optical Network 630 9

15 Cane 3775 9 45 Ozone 330 8

16 Cardio 375 9 46 Parkinsons 5875 21

17 College 694 24 47 PM2.5 of Five Cities 21436 9

18 Community Crime 1994 100 48 Price 159 15

19 Computer Hardware 209 6 49 Protein Structure 45730 9

20 Concrete Strength 1030 8 50 Rate 144 9

21 Concrete Slump Test 103 9 51 Rice 171 15

22 Cps 534 10 52 Scenic 113 10

23 CPU 209 7 53 Servo 167 4

24 Cycle Power Plant 9568 4 54 SML2010 4137 21

25 Deer 654 13 55 Smsa 141 10

26 Diabetes 375 15 56 Strike 625 5

27 Diamond 308 4 57 Tecator 215 10

28 Edu 1400 5 58 Tree 100 8

29 Energy E�ciency 768 8 59 Triazine 186 28

30 Enroll 258 6 60 Wage 3380 13
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Figure 5: Boxplots of Type II coverage rates for out-of-bag (OOB) prediction intervals,
split conformal (SC) prediction intervals, and quantile regression forest (QRF) intervals
for 60 datasets. The ordering of the datasets on the horizontal axis is the same for all
three panels and is determined by the average Type I coverage rates of OOB, SC and QRF
prediction intervals.
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Figure 6: A plot of the log2 ratios of split conformal (SC) interval width averages to out-of-
bag (OOB) interval width averages, and the log2 ratios of quantile regression forest (QRF)
interval width averages to out-of-bag (OOB) interval width averages for 60 datasets.

Our numerical results show that QRF prediction intervals tend to have Type I and

Type II coverage rates that deviate from the nominal level, sometimes over-covering and

sometimes under-covering target response values, more often than the other methods we

studied. Furthermore, when QRF intervals do cover at the nominal Type I or Type II rate,

they tend to be wider than OOB intervals. In most of our simulation scenarios involving

heteroscedastic errors, QRF prediction intervals outperformed OOB and SC intervals with

respect to Type III and Type IV coverage. This is not surprising because QRF intervals are

designed to provide Type III coverage, while SC intervals are only guaranteed to provide

marginal (Type I) coverage. Furthermore, the theorems presented in this paper – that

guarantee asymptotically correct coverage rates for OOB intervals – rely on an assump-

tion of homoscedasticity. Nonetheless, OOB and SC intervals outperform QRF intervals

with respect to Type III and IV coverage in some of our simulation scenarios involving

heteroscedasticity (and in most scenarios involving homoscedasticity).

To assess the validity of the homoscedasticity assumption for any particular dataset, we

suggest examining a residual plot of OOB prediction errors against estimated mean values.
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Figure 7: The e↵ect of tuning parameters on prediction intervals for the example of Con-
crete Strength dataset: (a) boxplots of Type II coverage rates for out-of-bag (OOB) pre-
diction intervals, split conformal (SC) prediction intervals, and quantile regression forest
(QRF) intervals under di↵erent combinations ofmtry and nodesize; (b) boxplots of interval
widths for out-of-bag (OOB) prediction intervals, split conformal (SC) prediction intervals,
and quantile regression forest (QRF) intervals under di↵erent combinations of mtry and
nodesize.
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Other variations on residual plots – e.g., plots of OOB prediction errors vs. important

predictors, plots of absolute OOB prediction errors vs. estimated mean values, etc. – may

also be used to identify discrepancies between assumptions and data. As in traditional

multivariate linear regression, a transformation of the response variable may be useful

for variance stabilization. In some cases, such transformations may be unavailable or

undesirable. In these situations, simple modifications to our approach as in Lei et al. (2018)

can be made to account for nonconstant error variance. More specifically, Lei et al. (2018)

provide an extension to SC inference, known as Locally Weighted Conformal Inference,

that yields prediction intervals with good empirical coverage properties when the error

variance is a function of the predictor vector. A completely analogous technique can be

used to improve the performance of OOB intervals when error variance changes across the

predictor space.

Our comparison of OOB and SC inference shows that these methods produce intervals

that behave similarly with respect to coverage probability. However, OOB intervals tend

to be narrower, and thus more informative, than SC intervals. The SC intervals come with

a guarantee of finite-sample Type I coverage probability at or above any specified level of

confidence under very general conditions. Although this marginal coverage guarantee is

very appealing, our numerical results in simulations and in the analysis of 60 real datasets

provide compelling evidence in favor of OOB intervals. We recommend that an OOB

interval be used alongside a random forest point prediction to provide a range of plausible

response values for those drawing conclusions from data.
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The Supplemental Materials provided here consist of two parts. Proofs of the distributional

results, regarding the coverage properties of out-of-bag prediction intervals (Section 3 of

the main manuscript), are detailed in Section S.1. In Section S.2 and Section S.3, we

then provide some additional figures to further support the numerical studies given in

Sections 5-6 of the main manuscript.

S.1 Proofs of Main Results

Proofs of Theorem 1 and Corollary 1. Corollary 1 follows from the convergence of

the conditional probability in Theorem 1 combined with the boundedness of the condi-

tional probability by 1; consequently, the expected value of the conditional probability in

Theorem 1 (or, equivalently, the unconditional probability in Corollary 1) converges to

1� ↵.

For the proof of Theorem 1, we require some notation as well as statements of Lem-

mas 1-2 to follow; proofs of these technical lemmas appear after that of Theorem 1. Let

(X, Y ), (X1, Y1), . . . , (Xn, Yn) be iid random vectors where Y �m(X) has continuous cdf F

under condition (c.3), i.e., F (t) = P{Y �m(X)  t}, t 2 R. Based on Cn ⌘ {(Xj, Yj)}nj=1,

let bY ⌘ bmn(X) denote theRF estimator ofm(X) and, for i = 1, . . . , n, let bY(i) = bmn,(i)(Xi)

denote the associated oob estimator of m(Xi) (i.e., based on the subforest RF(i) involving

observations Cn \ {(Xi, Yi)}), where condition (c.4) entails

|bmn(X)�m(X)| P! 0 and |bmn,(1)(X1)�m(X1)|
P! 0 as n ! 1. (S.1)

From the prediction di↵erences Dn,i ⌘ Di ⌘ Yi � bmn,(i)(Xi), i = 1, . . . , n, let D[n,�] ⌘

inf{t 2 R : bFn(t) � �} denote the � 2 (0, 1) empirical quantile based on the empirical

1



distribution

bFn(t) =
1

n

nX

i=1

I(Dn,i  t), t 2 R,

as an estimator of F , where I(·) denotes the indicator function above.

Lemma 1 Under conditions (c.1)-(c.4), as n ! 1,

sup
t2R

| bFn(t)� F (t)| P! 0

and F (D[n,�1])� F (D[n,�2])
P! 1� ↵ for any �1, �2,↵ 2 (0, 1) with �1 � �2 = 1� ↵.

Lemma 2 Under conditions (c.1)-(c.4), as n ! 1,

�n ⌘ sup
t2R

|P⇤ {Y � bmn(X) < t}� F (t)| = sup
t2R

|P⇤ {Y � bmn(X)  t}� F (t)| P! 0,

where P⇤(·) ⌘ P(·|Cn) denotes conditional probability given Cn = {(Xj, Yj)}nj=1.

Next, for ↵ 2 (0, 1), writing P⇤,n ⌘ P⇤(D[n,↵/2]  Y � bmn(X)  D[n,1�↵/2]) to denote

the target conditional coverage probability given Cn, we have

P⇤,n = P⇤(Y � bmn(X)  D[n,1�↵/2])� P⇤(Y � bmn(X) < D[n,↵/2])

= F (D[n,1�↵/2])� F (D[n,↵/2]) +Rn,

for a remainder Rn defined by subtraction. Then, P⇤,n
P! (1 � ↵) follows as n ! 1 in

Theorem 1 by using Lemma 1 along with the bound on the remainder |Rn|  2�n
P! 0

under Lemma 2. 2

Proof of Lemma 1. The second claim of Lemma 1 follows from the first using that F

is continuous. To see this, we consider showing F (D[n,�])
P! � for a fixed value � 2 (0, 1).

For a ⌘ inf{t 2 R : F (t) � �} and b ⌘ sup{t 2 R : F (t)  �}, note a  b and that

F (a � ✏) < � < F (b + ✏) holds for any ✏ > 0. From this, the first Lemma 1 claim yields

that P( bFn(a � ✏) < � < bFn(b + ✏)) ! 1 as n ! 1 for any given ✏ > 0. The event

bFn(a� ✏) < � < bFn(b+ ✏) implies that D[n,�] 2 [a� ✏, b+ ✏] so that |F (D[n,�])��|  ⇤(✏) ⌘

2



F (b+ ✏)�F (a� ✏) further holds, because F is non-decreasing with F (a) = F (b) = �. Now

F (D[n,�])
P! � follows by limn!1 P{|F (D[n,�]) � �|  ⇤(✏)} = 1 for each ✏ > 0 combined

with lim✏#0 ⇤(✏) = 0.

To establish the first claim of Lemma 1, it su�ces, by Poyla’s theorem and the continuity

of F , to show that bFn(t)
P! F (t) for any fixed t 2 R. Note that, usingm(X1)� bmn,(1)(X1)

d
=

m(X2)� bmn,(2)(X2)
P! 0 in (S.1) along with Slutsky’s theorem, we have

0

@ Dn,1

Dn,2

1

A =

0

@ Y1 �m(X1)

Y2 �m(X2)

1

A+

0

@ m(X1)� bmn,(1)(X1)

m(X2)� bmn,(2)(X2)

1

A d!

0

@ Y1 �m(X1)

Y2 �m(X2)

1

A (S.2)

as n ! 1, where Y1�m(X1) and Y2�m(X2) are again iid with continuous cdf F . By the

iid properties of the random vectors in Cn = {(Xj, Yj)}nj=1 along with (S.2), we then have

E bFn(t) = P(Dn,1  t) ! F (t) as n ! 1

for any given t 2 R, as well as

Var[ bFn(t)] =
1

n
Var[I(Dn,1  t)] +

n(n� 1)

n2
Cov [I(Dn,1  t), I(Dn,2  t)]

 1

n
+ P(Dn,1  t,Dn,2  t)� [P(Dn,1  t)]2

! [F (t)]2 � [F (t)]2 = 0

as n ! 1. This shows bFn(t)
P! F (t) and completes the proof of Lemma 1. 2

Proof of Lemma 2. The equality of the suprema defining �n follows from one-sided limit

behavior of cdfs (e.g., limt"s P⇤(Y � bmn(X)  t) = P⇤(Y � bmn(X) < s) and limt#s P⇤(Y �

bmn(X) < t) = P⇤(Y � bmn(X)  s)) along with F (t) = P(Y � m(X) < t), t 2 R, by
continuity. Writing Y � bmn(X) = [Y � m(X)] + [m(X) � bmn(X)], the conditional cdf

of [Y � m(X)] given Cn is F (i.e., the continuous unconditional cdf), as [Y � m(X)] is

independent of Cn. Hence, to establish Lemma 2, it su�ces to prove that the conditional

distribution of [m(X) � bmn(X)] given Cn converges to a distribution that is degenerate

at 0 (in probability). For any integer ` � 1, P⇤(|m(X) � bmn(X)| > `�1)
P! 0 follows as

3



n ! 1 using that

EP⇤(|m(X)� bmn(X)| > `�1) = P(|m(X)� bmn(X)| > `�1) ! 0

by (S.1). This implies the desired probabilistic convergence and completes the proof of

Lemma 2. [That is, if P⇤(|m(X)� bmn(X)| > `�1)
P! 0 for any integer ` � 1, then for any

subsequence {nj} ⇢ {n}, one may extract a further subsequence {nk} ⇢ {nj} such that

the set of sample points

A ⌘ {! 2 ⌦ : P⇤(|m(X)� bmnk
(X)| > `�1)(!) ! 0 as nk ! 1 for all ` � 1}

has P(A) = 1 on some probability space (⌦,F , P ); consequently, along the subsequence

{nk} and pointwise on A, the distribution of |m(X)� bmnk
(X)| under P⇤ converges weakly

to a degenerate distribution at 0 (i.e., with probability 1). As the subsequence {nj} ⇢ {n}

was arbitrary, the weak convergence of the distribution of |m(X)� bmn(X)| under P⇤ must

hold in probability.] 2

Proofs of Theorem 2 and Corollary 2. By re-defining the conditional probability

P⇤ in the proof of Theorem 1 to denote conditional probability P⇤(·) ⌘ P(·|Cn,X = x)

given both Cn = {(Xj, Yj)}nj=1 and X = x (rather than given Cn alone), the same proof

for Theorem 1 then applies to show Theorem 2. This is because Lemma 1 remains valid

along with a version of Lemma 2 with respect to the re-defined conditional probability P⇤;

namely, under Theorem 2 assumptions, the corresponding Lemma 2 result becomes

�n ⌘ sup
t2R

|P⇤ {Y � bmn(x) < t}� F (t)| = sup
t2R

|P⇤ {Y � bmn(x)  t}� F (t)| P! 0,

as n ! 1, under the conditional probability P⇤(·) ⌘ P(·|Cn,X = x). This recasting of

Lemma 2 can be justified using the same essential argument given in the previous proof of

Lemma 2 with two modifications: we use that the conditional distribution of Y �m(X) ⌘

Y � m(x) given Cn and X = x has cdf F (because e = Y � m(X), with cdf F , is

independent of X by condition (c.2) and independent of Cn by assumption) and we apply

bmn(x)
P! m(x) in place of bmn(X)

P! m(X). Theorem 2 then yields Corollary 2 in the

4



same manner as Corollary 1 follows from Theorem 1. 2

S.2 Additional Figures for Section 5
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Figure S.1: Boxplots of the Type II coverage rate estimates, i.e., P[Y 2 I↵(X,Cn)|Cn],
for out-of-bag (OOB) prediction intervals, split conformal (SC) prediction intervals, and
quantile regression forest (QRF) intervals when X ⇠ N(0, Ip) (uncorrelated predictors).
Each circle is the average of the 200 Type II coverage estimates summarized in a boxplot,
and represents an estimate of Type I coverage rate, i.e., P[Y 2 I↵(X,Cn)].
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Figure S.2: Boxplots of interval widths for out-of-bag (OOB) prediction intervals and split
conformal (SC) prediction intervals, and the average interval widths of quantile regression
forest (QRF) intervals when X ⇠ N(0,⌃p) (correlated predictors).
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Figure S.3: Boxplots of the log2 ratios of split conformal (SC) interval widths to out-of-bag
(OOB) interval widths, and the log2 ratios of quantile regression forest (QRF) interval
width averages to out-of-bag (OOB) interval widths when X ⇠ N(0, Ip) (uncorrelated
predictors).
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Figure S.4: Boxplots of the log2 ratios of split conformal interval (CONF) widths to out-of-
bag interval (OOB) widths, and the log2 ratios of quantile regression forest (QRF) interval
width averages to out-of-bag interval (OOB) widths when X ⇠ N(0, Ip) (uncorrelated
predictors).
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Figure S.5: Boxplots of the Type IV coverage rate estimates, i.e., P[Y 2 I↵(X,Cn)|Cn,X =
0], for out-of-bag (OOB) prediction intervals, split conformal (SC) prediction intervals, and
quantile regression forest (QRF) intervals when X ⇠ N(0, Ip) (uncorrelated predictors).
Each circle is the average of the 200 Type IV coverage estimates summarized in a boxplot,
and represents an estimate of Type III coverage rate, i.e., P[Y 2 I↵(X,Cn)|X = 0].
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Figure S.6: Boxplots of the Type IV coverage rate estimates, i.e., P[Y 2 I↵(X,Cn)|Cn,X =
1], for out-of-bag (OOB) prediction intervals, split conformal (SC) prediction intervals, and
quantile regression forest (QRF) intervals when X ⇠ N(0, Ip) (uncorrelated predictors).
Each circle is the average of the 200 Type IV coverage estimates summarized in a boxplot,
and represents an estimate of Type III coverage rate, i.e., P[Y 2 I↵(X,Cn)|X = 1].
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Figure S.7: Boxplots of the Type IV coverage rate estimates, i.e., P[Y 2 I↵(X,Cn)|Cn,X =
(3,�3, 3, · · · , 3)0], for out-of-bag (OOB) prediction intervals, split conformal (SC) predic-
tion intervals, and quantile regression forest (QRF) intervals when X ⇠ N(0,⌃p) (cor-
related predictors). Each circle is the average of the 200 Type IV coverage estimates
summarized in a boxplot, and represents an estimate of Type III coverage rate, i.e.,
P[Y 2 I↵(X,Cn)|X = (3,�3, 3, · · · , 3)0].
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Figure S.8: Boxplots of the Type IV coverage rate estimates, i.e., P[Y 2 I↵(X,Cn)|Cn,X =
(3,�3, 3, · · · , 3)0], for out-of-bag (OOB) prediction intervals, split conformal (SC) predic-
tion intervals, and quantile regression forest (QRF) intervals when X ⇠ N(0, Ip) (uncor-
related predictors). Each circle is the average of the 200 Type IV coverage estimates
summarized in a boxplot, and represents an estimate of Type III coverage rate, i.e.,
P[Y 2 I↵(X,Cn)|X = (3,�3, 3, · · · , 3)0].
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S.3 Additional Figures for Section 6
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Figure S.9: Boxplots of Type II coverage rate estimates for out-of-bag (OOB) prediction
intervals, split conformal (SC) prediction intervals, and quantile regression forest (QRF)
intervals for 20 datasets: Abalone, Air Quality, Airfoil Self-Noise, Ais, Alcohol, Amenity,
Attend, Auto MPG, Automobile, Baseball, Basketball, Beijing PM2.5, Boston, Budget,
Cane, Cardio, College, Communities Crime, Computer Hardware, and Concrete Strength.
The circles represent empirical Type I coverage rates.
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Figure S.10: Boxplots of Type II coverage rate estimates for out-of-bag (OOB) prediction
intervals, split conformal (SC) prediction intervals, and quantile regression forest (QRF)
intervals for 20 datasets: Concrete Slump Test, Cps, CPU, Cycle Power Plant, Deer,
Diabetes, Diamond, Edu, Energy E�ciency, Enroll, Facebook Metrics, Fame, Fat, Fishery,
Hatco, Hydrodynamics, Insur, Istanbul Stock, Laheart, and Medicare. The circles represent
empirical Type I coverage rates.
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Figure S.11: Boxplots of Type II coverage rate estimates for out-of-bag (OOB) prediction
intervals, split conformal (SC) prediction intervals, and quantile regression forest (QRF)
intervals for 20 datasets: Mumps, Mussels, Naval Propulsion Plants, Optical Network,
Ozone, Parkinsons, PM2.5 of Five Cities, Price, Protein Structure, Rate, Rice, Scenic,
Servo, SML2010, Smsa, Strike, Tecator, Tree, Triazine, and Wage. The circles represent
empirical Type I coverage rates.
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